Värähtelyn taajuus

Kujalla

Olen siis aivan kujalla.

Pystysuorassa olevan jousen päähän ripustettu kappale venyttää jousta 2,0 cm.
Kappaletta vedetään 5,0 cm alkuperäisen tasapainoaseman alapuolelle ja päästetään
sitten irti.
a) Kuinka suurella taajuudella systeemi värähtelee?
b) Kuinka suurella nopeudella kappale ohittaa tasapainoasemansa?

Tiedän, että taajuus F=1/(2*pi)*sqrt(k/m), mutta miten toimitaan kun massaa ei ole ilmotettu missään?
Ja b-kohdasta ei ole hajuakaan.

28

188

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • voimatasapaino

      F = k s = mg
      k/m = g/s

    • Värähtely

      b) Nyt siirtymän lauseke on x = A cos(ωt) ja nopeuden v = ẋ = Aω sin(ωt). Mikähän mahtaa olla jälkimmäisen lausekkeen arvo ajanhetkellä, jolloin x:n lauseke on 0 ja t > 0?

    • Kujalla

      ''Mikähän mahtaa olla jälkimmäisen lausekkeen arvo ajanhetkellä, jolloin x:n lauseke on 0 ja t > 0?''

      0?

      • Uutta trigonometriaa

        Mikä on sitten sellainen reaalinen kulman arvo, jolloin sekä sini että kosini ovat nollia?
        Sitähän tuo ehdotuksesi tarkoittaa.


    • 2442

      Nopeus v on suurimmillaan, kun kappale ohittaa tasapainoaseman. Silloin sini on ykkönen.

    • Kujalla

      ''Nopeus v on suurimmillaan, kun kappale ohittaa tasapainoaseman. Silloin sini on ykkönen.''

      Eli v=Aω(ωt)?

      • Uutta trigonometriaa

        Mistä tuo sulkulauseke oikein ilmestyi?


      • Kujalla
        Uutta trigonometriaa kirjoitti:

        Mistä tuo sulkulauseke oikein ilmestyi?

        Öhh, jos sin on siinä ohittaessaan tasapainopisteen 1, niin eihän se sulkulauseke häviä lausekkeesta v = Aω sin(ωt)?


    • 1612

      v = Aω

    • 1618

      sin(ωt) vaihtelee -1 ja 1 välillä. Nopeus on suurimmillaan, kun se saa arvon 1 eli "sini on ykkönen".

    • Kujalla

      Noinko yksinkertainen se sitten kaikenkaikkiaan olikin

      • aeija

        Ei ole kyllä mikään yksinkertainen noin pähkäiltynä, mutta tuo b-kohta onkin tarkoitettu laskettavaksi energiaperiaatteella: ½*k*0,05^2=½*m*v^2.

        Laitan tähän nyt vähän piirrostakin , ja kuvassa 0-taso asetetaan tasapainoasemaan:
        http://aijaa.com/VEXZvv


      • aeija
        aeija kirjoitti:

        Ei ole kyllä mikään yksinkertainen noin pähkäiltynä, mutta tuo b-kohta onkin tarkoitettu laskettavaksi energiaperiaatteella: ½*k*0,05^2=½*m*v^2.

        Laitan tähän nyt vähän piirrostakin , ja kuvassa 0-taso asetetaan tasapainoasemaan:
        http://aijaa.com/VEXZvv

        ihan se viimeinen termi paperissa pitää olla T, eikä T/4


      • 4+5
        aeija kirjoitti:

        Ei ole kyllä mikään yksinkertainen noin pähkäiltynä, mutta tuo b-kohta onkin tarkoitettu laskettavaksi energiaperiaatteella: ½*k*0,05^2=½*m*v^2.

        Laitan tähän nyt vähän piirrostakin , ja kuvassa 0-taso asetetaan tasapainoasemaan:
        http://aijaa.com/VEXZvv

        aeija onkin pitkään ollut "piilossa"


      • aeija
        aeija kirjoitti:

        ihan se viimeinen termi paperissa pitää olla T, eikä T/4

        Siinähän on sotkettu yksiköitä oikein tuelta, senttejä ja metrejä sekaisin.
        Korjataan nyt ainakin se: http://aijaa.com/erkVbV
        Siitä taitaa tulla nopeudeksi v=1,1 m/s


    • 19+15

      Ei tuossa mitään energioita tarvita. Riittä ihan se, että tietää kappaleen paikan ajan funktiona. Siitä sitten derivoimalla nopeus.

      • aeija

        Tehdääskin niin, kun jäikin vähän vaivaamaankin, tämähän lähtee liikkeelle sieltä ala-asennosta, ja laitetaan heti alkuun se käyrän yhtälön johtaminen:
        http://aijaa.com/7U0t0S

        Sitten jatketaan: http://aijaa.com/W3vB36. Tuli vielä hankalampi.


      • aeija

    • WAlpha
      • aeija

      • WAlpha

      • 123123
        WAlpha kirjoitti:

        Olet oikeassa.

        ei ole oikein


      • 123123
        123123 kirjoitti:

        ei ole oikein

        Tulos on oikein, mutta diffyhtälöä on jo sievennetty g- ja jousivoiman osalta.


      • Kysyn vain
        123123 kirjoitti:

        Tulos on oikein, mutta diffyhtälöä on jo sievennetty g- ja jousivoiman osalta.

        Luuletko, että aloittanut lumiukko olisi yleisestä symbolisesta ratkaisusta saanut mitään vihjettä?


      • 123123
        Kysyn vain kirjoitti:

        Luuletko, että aloittanut lumiukko olisi yleisestä symbolisesta ratkaisusta saanut mitään vihjettä?

        Koordinaatiston valinnassa on kakai luontevaa vaihtoehtoa. Molemmat johtavat lopulta samaan lopputulokseen, kuten pitääkin.


      • Kysyn vain kirjoitti:

        Luuletko, että aloittanut lumiukko olisi yleisestä symbolisesta ratkaisusta saanut mitään vihjettä?

        Selvennetään asiaa.

        Periaate on että voima on k*s , jossa s on poikkeama tasapainoasemasta ja se on yhtä kuin m*s''(t) (m*a)
        Lisäksi tiedetään että m *g = k*2cm ja päädytään yhtälöön
        -g/2cm*s = s''(t) ja loppu on laskentaa.

        --> -50g s^2 c = v^2 , s=5cm, v =0, c = 0.125*g -> v= 1.107m/s

        s'(t) = sqrt(0.125*g - 50*g*(s(t))^2) jne, josta t = 2pii *sqrt(0.02/g) =0.28 s ja taajuus 1/t = 3.52.

        Ps
        Toive aeija : lle, hieman selvempää tekstiä, ymmärtäminen olisi huomattavasti helpompaa.


      • e.d.k kirjoitti:

        Selvennetään asiaa.

        Periaate on että voima on k*s , jossa s on poikkeama tasapainoasemasta ja se on yhtä kuin m*s''(t) (m*a)
        Lisäksi tiedetään että m *g = k*2cm ja päädytään yhtälöön
        -g/2cm*s = s''(t) ja loppu on laskentaa.

        --> -50g s^2 c = v^2 , s=5cm, v =0, c = 0.125*g -> v= 1.107m/s

        s'(t) = sqrt(0.125*g - 50*g*(s(t))^2) jne, josta t = 2pii *sqrt(0.02/g) =0.28 s ja taajuus 1/t = 3.52.

        Ps
        Toive aeija : lle, hieman selvempää tekstiä, ymmärtäminen olisi huomattavasti helpompaa.

        En malta olla jatkamatta.

        Näissä yksinkertaisissa tapauksissa integrointi on kohtuuttoman hankalaa (tai ohjelmia vaativaa), vaikka pienellä päättelyllä pääsee paljon vähemmällä.

        Edellä oli jo maininta että energiaperiaatteella saadaan nopeus värähtelyn puolivälissä (=max).
        Tähän tapaukseen voidaan kuvitella virtuaalinen värähtely kohtisuorassa suunnassa ja 90 asteen vaihesiirrolla, joka ei vaikuta alkuperäisen suuntaiseen liikkeeseen, mutta kappaleen liike olisi ympyräliikettä, johon pätee keskipakovoiman ja jousivoiman tasapaino eli m*v^2/s = k*s, josta v on sama kuin energiaperiaatteellakin eli v=s*sqrt(k/m), ja kun m on k*0.02/g
        v= s*sqrt(g/0.02)
        Kun virtuaalivärähtelijä on kiertänyt täyden kierroksen, matka on 2*pii*s, josta aika saadaan jakamalla matka nopeudella, siis
        t= 2*pii*sqrt(0.02/g)

        Ei integrointia , ei vaikeita lausekkeita , ei tietokoneavusteisia ohjelmia, vain pari perus laskutoimitusta, siinä kaikki.


    • 6511

      Tässä ratkaisu "perinteisellä tyylillä".

      Otetaan selkeyden vuoksi ensin koordinaatistoksi venyttämättömän jousen nollakohta. Voimatasapainosta saadaan yhtälö:
      my'' ky mg = 0
      y'' (k/m) y g = 0

      Tasapainotilassa y' ja y'' = 0, joten y = -g (m/k). Tämän verran jousi siis venyy alaspäin. Venymä on -0.02 m, joten siitä saadaan k/m = g/0.02. Yhtälö voidaan nyt panna myös muotoon:

      y'' (g/0.02) y g = 0

      Valitaan uusi muuttuja z = y 0.02. Alkutilanteen tasapainossa y = -0.02, joten z = 0. Lisäksi z' = y' ja z'' = y''. Yhtälö saadaan muotoon:

      z'' (g/0.02) (z-0.02) g = 0
      z'' (g/0.02)z - g g = 0
      z'' (g/0.02) z = 0

      Kyseessä on perinteinen värähtely-yhtälö. Merkitään vielä
      g/0.02 = w**2
      z'' w**2 z = 0

      Yhtälön ratkaisuksi kelpaa sekä sini(wt) että cos(wt). Haetaan ratkaisua muodossa:
      z(t) = Asin(wt) Bcos(wt)
      Tällöin
      z'(t) = wAcos(wt) - wBsin(wt) = v(t)

      Alkuehdoista määritetään kertoimet A ja B.
      z(0) = -0.05 --> B = -0.05/w
      z'(0) = 0 = wA --> A = 0

      Ratkaisu on
      z(t) = - 0.05 cos(wt)
      ja nopeus
      v(t) = 0.05 w sin(wt)

      w = sqrt( 9.81/0.02) = 2 pi f, josta saadan f = 3.52 Hz. Maksiminopeus v_max = 0.05 w = 1.107 m/s.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. IL - PerSut tykittää - Vaaralliset tappajat vankilaan jopa loppuelämäksi!!

      Entistä rajumpi elinkautinen tulee – Vaaralliset tappajat vankilaan jopa loppuelämäksi Henkirikosten uusijat voidaan ja
      Maailman menoa
      174
      22323
    2. Some kuhisee Sanna Marinista: "Wau"

      Sanna Marinia hehkutetaan. Muun muassa Jodelissa kommentoidaan The Sunday Timesin julkaisemaa kuvaa Marinista. Hän ant
      Maailman menoa
      75
      9532
    3. Sannalla tänään vuorossa The Daily Show

      Eli nyt mennään jo satiirin puolelle. Tuohan on vähän kuten Lindströmin ohjelma Suomessa.
      Maailman menoa
      29
      7510
    4. Äärioikeistopurran nukke Petteri Lapanen paniikissa

      Kun Suomen historian paras pääministeri antoi vankan lausunnon, kuinka "keskustelu politiikassa on käpertynyt lähinnä va
      Maailman menoa
      81
      6350
    5. SIELTÄ SE TULI: Kepu-Kurvinen: "Emme enää lähde punavihreään hallitukseen"

      Nyt muuten nauretaan loppuviikko, että tähänkö kaatui Lindtmanin pääministerihaaveet. "Antti Kurvisen mukaan puolue ei
      Maailman menoa
      182
      6000
    6. Täysi ryöpytys Sanna Marinille ulkomailla.

      https://www.iltalehti.fi/ulkomaat/a/f699d84f-fa53-4dba-8718-2c395017fc55 Sanna Marinin kirja saa todella tylyn vastaanot
      Maailman menoa
      37
      5003
    7. HS - Sanna Marinin kirja on priimaluokan vedätys!

      Kirja-arvio|Toivo on tekoja tulisi ensisijaisesti nähdä maineen rahallisen hyödyntämisen voimaannuttavana merkkipaaluna.
      Maailman menoa
      108
      4656
    8. Minja Koskelan "istumista" kertovassa uutisessa ei sanottu persuista mitään

      eli jälleen kerran äärivasemmistolainen valehtelee, hän kun väittää että juuri persut ovat lähetelleet Koskelalle vähemm
      Maailman menoa
      101
      4396
    9. Pekka Visuri: "Suomen on aika irrottautua Ukrainan sodasta"

      Slava Ukraina-mölinät eivät enää auta. Ukraina on sotansa hävinnyt. Nyt tarvitaan poliittista selvänäköisyyttä, reaalipo
      Maailman menoa
      89
      2111
    10. Marin vetäs lopullisesti maton alta hallitusyhteistyöltä Kepun kanssa

      Kurvinen on jo ennättänyt kommentoimaan, ettei Kepu ole koskaan enää kiinnostunut vasemmiston kanssa hallituspaikasta, k
      Maailman menoa
      80
      1387
    Aihe