diffis

maths

Osaako kukaan ratkaista tätä: y' sin x - y = 1 - cos x.

9

558

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      en osaa

    • Anonyymi

      Tuolloin vuonna 2006 ei vissiin vielä ollu Wolfram Alphaa!?!? Se osaa: vastaus on y = C*tan(x/2) x*tan(x/2).

      Mutta näinhän sen voi ratkaista: https://www.mathsisfun.com/calculus/differential-equations-first-order-linear.html

      Eli asetetaan y = uv ja u:lle saadaan kohdassa kolme yhtälö

      u' = u/sin(x)

      Mistä se muuten tulee, että tuo "v-termi" asetetaan nollaksi? Noh, joka tapauksessa tämä johtaa integraatioon

      int du/u = int dx/sin(x)

      Mikä ihme on 1/sinin integraali. En muista, noh WA muistaa ja se on log(tan(x/2)) eli juuri sopivasti toiselle puolelle tuleva eksponenttifunktio kumoaa logaritmin ja u=tan(x/2) ( C).
      Ja taianmaisesti (joku trig-kaava varmaan)
      (1/sin(x)-1/tan(x))/tan(x/2) = 1
      joten
      v = x C.
      Siinähän se ratkaisu sitten onkin.

      Tämähän oli itsellenikin hyvää kertausta! En muista olenko tuota y=uv metodia koskaan kuullutkaan.

      • Anonyymi

        "Mistä se muuten tulee, että tuo "v-termi" asetetaan nollaksi?"

        Kerroin v:n edessä on alkuperäisen (siistityn) yhtälön vasen puoli. Tarkoitus on ratkaista homogeeninen yhtälö vp. = 0. Lopullinen ratkaisu on jokin x:n funktio kertaa homogeenisen yhtälön
        y ' p (x) y = 0
        ratkaisu h(x). Tämä johtuu täysin h:n ominaisuuksista ja siitä, että u h ' p u h = 0, kun h on aina eksponentti ja integraali -muotoinen ja sen derivaatta on h' = p h.

        Ratkaisumenetelmän voi johtaa kahdessa eri järjestyksessä, joko tällä tavalla oudosti toteamalla kaksi edellistä identitettiä, kun oli arvannut ratkaista homogeenisen yhtälön. Tai alkuperäisemmin alkamalla etsiä h:hon liittyvää funktiota, jolla olisi ominaisuutena tehdä
        y' p(x) y lauseesta yksi derivaattatermi d (y * ? ) / dx (siksi h:n nimi on integraatiotekijä tms.).

        Vertaa näitä kahta johtoa yleiselle yhtälölle:

        https://en.wikipedia.org/wiki/Integrating_factor#Solving_first_order_linear_ordinary_differential_equations
        https://en.wikipedia.org/wiki/Method_of_variation_of_parameters#First-order_equation


      • Anonyymi

        Ei taikaa.
        sin(x) = sin(x/2 x/2) = sin(x/2) cos(x/2) cos(x/2) sin(x/2) = 2 sin(x/2) cos(x/2)
        cos(x) = cos(x/2 x/2) = cos^2(x/2) - sin^2(x/2) = 1 - 2 sin^2(x/2)

        1/sin(x) - 1/tan(x) = 1/sin(x) - cos(x)/sin(x) = 1/sin(x) (1 - cos(x)) = 1/(2 sin(x/2) cos(x/2)) *
        2 sin^2(x/2) = sin(x/2) / cos(x/2) = tan(x/2)


      • Anonyymi
        Anonyymi kirjoitti:

        Ei taikaa.
        sin(x) = sin(x/2 x/2) = sin(x/2) cos(x/2) cos(x/2) sin(x/2) = 2 sin(x/2) cos(x/2)
        cos(x) = cos(x/2 x/2) = cos^2(x/2) - sin^2(x/2) = 1 - 2 sin^2(x/2)

        1/sin(x) - 1/tan(x) = 1/sin(x) - cos(x)/sin(x) = 1/sin(x) (1 - cos(x)) = 1/(2 sin(x/2) cos(x/2)) *
        2 sin^2(x/2) = sin(x/2) / cos(x/2) = tan(x/2)

        Tuli 1. riville kirjoitusvirhe. p.o.:...= sin(x/2) cos(x/2) cos(x/2) sin(x/2) :...


      • Anonyymi

        Ei ole taikuutta eikä ihmettä tuossa integraalissakaan.Mitähän sinä matematiikasta opit jos lasketat W-A:lla valmiita vastauksia?
        dx /sin(x) = dx/(2 sin(x/2) cos(x/2)) =( dx/cos^2(x/2)) / (2 sin(x/2) / cos(x/2)) =( d tan(x/2)) / tan(x/2) = d (log(tan(x/2))) joten Int(dx/sin(x)) = log(tan(x/2)).


    • Anonyymi

      "du/u = int dx/sin(x)

      Mikä ihme on 1/sinin integraali. En muista, noh WA muistaa ja se on log(tan(x/2)) eli juuri sopivasti toiselle puolelle tuleva eksponenttifunktio kumoaa logaritmin ja u=tan(x/2) ( C)."

      Miksi tässäkin on jätetty käsittelemättä itseisarvoista tuleva toinen ratkaisu :
      u=-tan(x/2) C ?
      Siitä tuleva ratkaisu y: lle ei tosin toteuta alkuperäistä dif. yhtälöä, mutta ei sitä tässä vaiheessa voi vielä tietää..

      • Anonyymi

        Mulle tuli tuossa semmonen virhe, että se vakio C:hän tulee kertoimeksi, koska otetaan exp(). Sen takia ei siis tulekaan vakiota lopulliseen ratkaisuun, vaan siinä vain toinen vakio sulautuu kertoimena jo olemassaolevaan.


      • Anonyymi
        Anonyymi kirjoitti:

        Mulle tuli tuossa semmonen virhe, että se vakio C:hän tulee kertoimeksi, koska otetaan exp(). Sen takia ei siis tulekaan vakiota lopulliseen ratkaisuun, vaan siinä vain toinen vakio sulautuu kertoimena jo olemassaolevaan.

        Tuossa ensimmäisessä vaiheessa ei tule vakiota C ollenkaan, vaan se tulee vasta sitten kun v ratkaistaan, eli v=x C, ja y= uv, eli y=tan(x/2)(x C)


    Ketjusta on poistettu 5 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Ikävöin sinua kokoyön!

      En halua odottaa, että voisin näyttää sinulle kuinka paljon rakastan sinua. Toivon, että uskot, että olen varsin hullun
      Ikävä
      61
      4378
    2. KALAJOEN UIMAVALVONTA

      https://www.kalajokiseutu.fi/artikkeli/ei-tulisi-mieleenkaan-jattaa-pienta-yksinaan-hiekkasarkkien-valvomattomalla-uimar
      Kalajoki
      149
      3165
    3. Jos sinä olisit pyrkimässä elämääni takaisin

      Arvelisin sen johtuvan siitä, että olisit taas polttanut jonkun sillan takanasi. Ei taida löytyä enää kyliltä naista, jo
      Tunteet
      48
      2482
    4. Kadonnut poika hukkunut lietteeseen mitä kalajoella nyt on?

      Jätelautta ajautunut merelle ja lapsi uponnut jätelautan alle?
      Kalajoki
      50
      2407
    5. Hukkuneet pojat kalajoella pakolaisia?

      Eivät osanneet suomea nimittäin.
      Maailman menoa
      98
      2065
    6. Älä mahdollisesti ota itseesi

      En voinut tietää. Sitäpaitsi.. niin
      Ikävä
      24
      1883
    7. Ota nainen yhteyttä ja tee Tikusta asiaa?

      Niin sitten minä teen Takusta asiaa.
      Ikävä
      30
      1616
    8. Joku hukkui Hyrynsalmella?

      Oliko mökkiläinen taas?
      Hyrynsalmi
      23
      1612
    9. Mitä sinä mietit

      Mies?
      Ikävä
      154
      1451
    10. Metsästysmökki

      Metsästyskortti saapui. Lisäksi metsästysmökki varata!
      Kuhmo
      34
      1253
    Aihe