Todennäköisyydet

Anonyymi

Hei. Kun laskee binomitodennäköisyyksiä, niin miksi ne poikkeaa odotusarvosta.
Esim nopanheitto , kun heitetään 4 kertaa ja lasketaan todennäköisyys silmäluvulle 4.
nCr (4,1)*(1/6) *(5/6)³=0,387
Mutta kun lasketaan odotusarvo, niin se on 4*1/6=0666
Lisäksi binomitodennälöisyys on tietyllä heittojen määrällä suurin, mutta laskee heittojen määrän lisääntyessä ja myös pienentyessä.

Elikö kun heittää suuren määrän heittoja, niin kumpi on lähempänä oletusarvo, vai binomitodennäköisyys.
T Olli

16

214

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Laskemalla odotusarvo, saadaan aina oikea tulos. Päättele siitä. Ja jos lasket jotain muuta, voit myös saada ihan oikean tuloksen johonkin muuhun.

      • Anonyymi

        Niin binomitodennäköisyyttä laskettaessa, lasketaan todennäköisyys, sille, että nelosia tulee 0, 1,2,3, tai neljä. Tuossa yhden nelosen tapauksessa olettaisi, että luku olisi lähellä odotusarvoa.
        Eli en ymmärrä mitä tuo binomitodennäköisyys mittaa


    • Anonyymi

      "Mutta kun lasketaan odotusarvo, niin se on 4*1/6=0,666"

      Mille lasket odotusarvon? Eihän mitään voi laskea, jos ei edes tiedä mitä pitäisi laskea.

    • Anonyymi

      Siis, kun noppaa heitetään neljä kertaa, niin tehtävässä kysytään, että laske binomijakautumalla silmäluvun neljä esiintyminen.

      Eli lasketaan normaalisti binoomikaavalla millä todennäköisyyllä tulee nolla nelosta, ja millä todennäköisyydellä tulee yksi nelonen, millä kaksi nelosta, millä kolme nelosta, ja millä neljä. Siis neljä heittoa ja noille vaihtoehdoille todennäköisyys binomikaavalla

      • Anonyymi

        P(0 nelosta esiintyy) = (5/6)^4
        P(1 nelonen) = C(4,1) * 1/6 * (5/6)^3
        P(2 nelosta) = C(4,2) * (1/6)^2 * (5/6)^2
        P(3 nelosta) = C(4,3) * (1/6)^3 * (5/6)
        P(4 nelosta) = (1/6)^4
        C(n,m) on binomikerroin ja kertoo kuinka monella tavalla n:stä objektista voidaan poimia m eri objektia.
        C(n,m) = n! / (m! (n - m)!)


      • Anonyymi
        Anonyymi kirjoitti:

        P(0 nelosta esiintyy) = (5/6)^4
        P(1 nelonen) = C(4,1) * 1/6 * (5/6)^3
        P(2 nelosta) = C(4,2) * (1/6)^2 * (5/6)^2
        P(3 nelosta) = C(4,3) * (1/6)^3 * (5/6)
        P(4 nelosta) = (1/6)^4
        C(n,m) on binomikerroin ja kertoo kuinka monella tavalla n:stä objektista voidaan poimia m eri objektia.
        C(n,m) = n! / (m! (n - m)!)

        Lisäkommentti: Onkohan aloittajalla odotusarvon käsite selvillä?
        Odotusarvo sille, montako nelosta tulee neljällä heitolla, on

        0*P(0 nelosta) 1*P(1 nelonen) 2* P(2 nelosta) 3* P(3 nelosta) 4* P(4 nelosta)


    • Tuo todennäköisyys nCr (4,1)*(1/6) *(5/6)³=0,387 on todennäköisyys sille, että tulee tasan yksi nelonen, kun heitetään neljä kertaa. Jos toistat neljän heiton sarjaa monta kertaa ja lasket ne sarjat, joissa tuli tasan yksi nelonen, niin tämä suhde lähenee (melkein varmasti) 0,387:aa.

      Odotusarvo 4*1/6 taas kertoo siitä kuinka monta nelosta on odotettavissa yhdessä sarjassa. Jos toistetaan neljän heiton sarjaa ja lasketaan joka sarjasta kuinka monta nelosta siinä tuli, niin näiden lukujen keskiarvo lähenee 0,666:tta.

      • Anonyymi

        Aloittajan kannattaa heittää aina kuuden sarjoja. Kysytyn odotusarvon laskenta helpottuu ja muuttuu ymmärrettäväksi. Ja aina tietysti pitää kertoa koko tehtävän tarkka sanamuoto. Myös ne kohdat, joita ei vielä ymmärrä.


    • Anonyymi

      Jos heität 60 kertaa noppaa, saat odotusarvoksi 60 * 1/6 = 10. Itse asiassa odotusarvo voi olla kuinka suuri tai pieni tahansa, kun taas todennäköisyydet ovat aina väliltä [0,1]. Tässä siis vaikuttaa menneen käsitteiden merkitykset sikin sokin.

      • Anonyymi

        Jos heität noppaa 60 kertaa niin todennäköisyys sille että olet heittänyt noppaa 60 kertaa on aika tarkkaan 1.


      • Anonyymi

        Sekavalta vaikutat itsekin. Minkä satunnaismuuttujan odotusarvosta nyt puhut? Jos se tarkoittamasi muuttuja on saatujen nelosten lukumäärä X, niin

        E(X) = Summa (0 <= i <= 60) ( i * C(60,i) (1/6)î * (5/6)^(60 - i))

        Tn että jollain tietyllä heitolla saat nelosen = 1/6 ja tn että ei tule nelosta = 5/6.


      • Anonyymi
        Anonyymi kirjoitti:

        Sekavalta vaikutat itsekin. Minkä satunnaismuuttujan odotusarvosta nyt puhut? Jos se tarkoittamasi muuttuja on saatujen nelosten lukumäärä X, niin

        E(X) = Summa (0 <= i <= 60) ( i * C(60,i) (1/6)î * (5/6)^(60 - i))

        Tn että jollain tietyllä heitolla saat nelosen = 1/6 ja tn että ei tule nelosta = 5/6.

        Tuli tuohon näppäilyvirhe:
        E(X) = Summa (0 <= i <= 60) (i * C(60,i) * (1/6) ^i * (5/6) ^(60 - i))


      • Anonyymi
        Anonyymi kirjoitti:

        Jos heität noppaa 60 kertaa niin todennäköisyys sille että olet heittänyt noppaa 60 kertaa on aika tarkkaan 1.

        Näin on! Ihmettelen, että vaikka todennäköisyyslaskenta on pohjimmiltaan näin yksinkertaista, miten se tuntuu monista silti niin vaikealta.


    • Anonyymi

      Ihan jännä kysymyshän tämä oli. Tosiaan noissa lasketaan kahta täysin eri asiaa.

      Ensimmäinen on ns. indikaattorimuuttuja sille, että saat täsmälleen yhden nelosen. Se saa arvon 1, jos tulee täsmälleen 1 nelonen, mutta 0, jos tulee jokin muu määrä. Tuo todennäköisyys on nyt tällaisen muuttujan odotusarvo, todennäköisyyden voi yleensä tulkita indikaattorimuuttujan odotusarvoksi.

      Toinen muuttuja (se jolle jälkimmäisessä lasket odotusarvoa) on nelosten määrä. Se saa arvoja ihan eri skaalalla 0-4. Se saa arvon 0, jos ei ole yhtään nelosta, ja arvon 4, jos kaikki ovat nelosia. Sen odotusarvokin on eri skaalalla.

      Kannattaa kuitenkin huomata, että nuo kaksi satunnaismuuttujaa ovat kuitenkin aika lailla samaa asiaa mittaavia. Jälkimmäisestä saa ensimmäisen, jos kuvaa sen arvot 2, 3 ja 4 nolliksi.

    • Anonyymi

      Kyllä pystyy epämatemaatikko selvää asiaa sotkuisesti selitellä!

      • Anonyymi

        P.o.: ...osaa...


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Tänään pyörit ajatuksissa enemmän, kun erehdyin lukemaan palstaa

      En saisi, silti toivon että sinä vielä palaat ja otetaan oikeasti selvää, hioituuko särmät ja sulaudummeko yhteen. Vuod
      Ikävä
      22
      5074
    2. Huomenta ihana

      Kauniskasvoinen ihanuus 😘 saan sut vielä
      Ikävä
      25
      4238
    3. Hei rakas...

      Miten on työpäivä sujunut? Rakastan sinua 💗
      Ikävä
      27
      2421
    4. Edelleen sitä on vaikea uskoa

      Että olisit oikeasti rakastunut muhun
      Ikävä
      34
      2214
    5. Toiveikas vai toivoton

      torstai? Ajatuksia?
      Ikävä
      37
      1988
    6. Vitsi mihin menit. Heti takasin.

      Mä näin sut tuu takasin! Oli kiire, niin en ehtiny sin perään!
      Ikävä
      15
      1888
    7. En ole koskaan kokenut

      Ennen mitään tällaista rakastumista. Tiedän että kaipaan sinua varmaan loppu elämän. Toivottavasti ei tarvitsisi vain ka
      Ikävä
      19
      1577
    8. Mukavaa päivää

      Mun rakkauden kohteelle ❤️ toivottavasti olet onnellinen
      Ikävä
      12
      1501
    9. Voi ei! Jari Sillanpää heitti keikan Helsingissä - Hämmästyttävä hetki lavalla...

      Ex-tangokuningas on parhaillaan konserttikiertueella. Hän esiintyi Savoy teatterissa äitienpäivänä. Sillanpää jakoi kons
      Suomalaiset julkkikset
      20
      1219
    10. Kerranki asiat oikein

      Ilkka ja muut pienpuolueeet...teitte hyvän työn kun valitsitte pätevän henkilön virkaan eikä kepulle passelia!! Jatkakaa
      Haapavesi
      10
      1154
    Aihe