Apua todennäköisyyslaskennassa

Anonyymi

Olin miettimässä, että miten lasketaan todennäköisyys saada ensin pata ja sitten numero 6, jos kortteja ei palauteta pakkaan. Onko se vaan, että lasketaan tapahtumat yhteen, että muu pata x pata 6 muu pata x 6?

18

158

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      P(ensin pata) = 13/52
      P(sitten 6) =P(6 ja 1. kortti oli patakuutonen) P(6 ja 1.kortti ei ollut patakuutonen) =
      3/51 * 1/52 4/51 * 51/52 . Tässäon käytetty kaaavaa
      P(AB) = P(B) * P(A l B)
      Kysytty todennäköisyys on P(ensin pata) * P(sitten 6).

    • Anonyymi

      Tässä on siis kaksi eri tapausta, jotka ovat mahdollisia:

      Tapaus1: ensin pata6, sitten muu 6

      Tämän TN = 1/52 * 3/51

      Tapaus2: ensin muu pata kuin pata6, sitten mikä vaan 6 käy

      Tämän TN = 12/52 * 4/51

      Nämä kaksi tulosta yhteen, niin saadaan koko tapahtuman TN.

      • 1*3 12*4 = 51, siis todennäköisyys on 1/52 eli sama, jos kysyttäisiin suoraan onko vedetty kortti pata 6. Toisaalta vaikka kortti palautettaisiin olisi todennäköisyys myös 1/52. Tässä on jotain outoa.


      • Anonyymi
        okaro kirjoitti:

        1*3 12*4 = 51, siis todennäköisyys on 1/52 eli sama, jos kysyttäisiin suoraan onko vedetty kortti pata 6. Toisaalta vaikka kortti palautettaisiin olisi todennäköisyys myös 1/52. Tässä on jotain outoa.

        Tapahtumat "eka kortti on pata" ja "toka kortti on kutonen" ovat riippumattomat. Johtunee siitä, että jokaista numeroa on kussakin maassa saman verran (1). Näinhän se korttien valinta voidaan tehdä, kun korttia ei palauteta. Voidaan ajatella, että sekoitetusta pakasta otetaan kaksi päälimmäistä. Tai siis sillä ei ole väliä monetta korttia kummankin kysymykset suhteen tutkitaan ja voidaan itse asiassa tutkia molemmat kysymykset ekasta kortista eli kysytään onko se patakutonen.

        Jos taas kortti palautetaan, niin silloihan riippumattomuus on itsestäänselvää, joten myös siinä päädytään todennäköisyyteen 1/4 * 1/13 = 1/52.


      • Anonyymi
        Anonyymi kirjoitti:

        Tapahtumat "eka kortti on pata" ja "toka kortti on kutonen" ovat riippumattomat. Johtunee siitä, että jokaista numeroa on kussakin maassa saman verran (1). Näinhän se korttien valinta voidaan tehdä, kun korttia ei palauteta. Voidaan ajatella, että sekoitetusta pakasta otetaan kaksi päälimmäistä. Tai siis sillä ei ole väliä monetta korttia kummankin kysymykset suhteen tutkitaan ja voidaan itse asiassa tutkia molemmat kysymykset ekasta kortista eli kysytään onko se patakutonen.

        Jos taas kortti palautetaan, niin silloihan riippumattomuus on itsestäänselvää, joten myös siinä päädytään todennäköisyyteen 1/4 * 1/13 = 1/52.

        Eivät ne ole riippumattomat jos korttia ei palauteta.
        4/51 * 12/52 = P(2. kortti on 6 l 1. kortti oli muu pata kuin patakutonen) * P(1. kortti oli muu pata kuin patakutonen)
        3/51 * 1/52 = P(2. kortti on 6 l 1. kortti oli patakutonen)* P(1. kortti oli patakutonen)
        Kysytty tn = näiden summa = 1/52


      • Anonyymi
        Anonyymi kirjoitti:

        Eivät ne ole riippumattomat jos korttia ei palauteta.
        4/51 * 12/52 = P(2. kortti on 6 l 1. kortti oli muu pata kuin patakutonen) * P(1. kortti oli muu pata kuin patakutonen)
        3/51 * 1/52 = P(2. kortti on 6 l 1. kortti oli patakutonen)* P(1. kortti oli patakutonen)
        Kysytty tn = näiden summa = 1/52

        Tapahtumat on
        A = "eka kortti on pata"
        B = "toka kortti on kutonen"

        Riippumattomuudessa pitää olla
        P(B|A) = P (B)
        tai yhtäpitävästi
        P(B ja A) = P(A)*P(B)
        ja tämähän on juuri mitä tehtävässä laskettiin: 1/52 = 1/4 * 1/13.


      • Anonyymi
        Anonyymi kirjoitti:

        Tapahtumat on
        A = "eka kortti on pata"
        B = "toka kortti on kutonen"

        Riippumattomuudessa pitää olla
        P(B|A) = P (B)
        tai yhtäpitävästi
        P(B ja A) = P(A)*P(B)
        ja tämähän on juuri mitä tehtävässä laskettiin: 1/52 = 1/4 * 1/13.

        Tuo laskusi kuvaa tapausta että kortti palautetaan pakkaan. Tällöin tn saada 1. kerralla pata = 13/52 = 1/4. Tn nsaada toisella kerralla kutonen = 4/52 = 1/13. Koko tn non 1/52.

        Mutta jos korttia ei palauteta niin toisen noston tn riippuu siitä mitä 1. nostolla tapahtui. Sattumalta molemmissa tapauksissa koko tn = 1/52.

        Nähdään, että jos tapaukset A ja B ovat riippumattomia niin P(AB) = P(A)*P(B).
        Mutta jos P(AB) = P(A) * P(B) niin A ja B ei vät välttämättä ole riippumattomia!


      • Anonyymi
        Anonyymi kirjoitti:

        Tuo laskusi kuvaa tapausta että kortti palautetaan pakkaan. Tällöin tn saada 1. kerralla pata = 13/52 = 1/4. Tn nsaada toisella kerralla kutonen = 4/52 = 1/13. Koko tn non 1/52.

        Mutta jos korttia ei palauteta niin toisen noston tn riippuu siitä mitä 1. nostolla tapahtui. Sattumalta molemmissa tapauksissa koko tn = 1/52.

        Nähdään, että jos tapaukset A ja B ovat riippumattomia niin P(AB) = P(A)*P(B).
        Mutta jos P(AB) = P(A) * P(B) niin A ja B ei vät välttämättä ole riippumattomia!

        Kertaapas tapahtumien riippumattomuuden määritelmä: https://fi.wikipedia.org/wiki/Tapahtumien_riippuvuus#Riippumattomuus


      • Anonyymi
        Anonyymi kirjoitti:

        Kertaapas tapahtumien riippumattomuuden määritelmä: https://fi.wikipedia.org/wiki/Tapahtumien_riippuvuus#Riippumattomuus

        Sinä et taida ymmärtää mitä logiikassa implikaatio tarkoittaa. Jos A -> B niin ei välttämättä B -> A.
        Tapahtumat A ja B riippumattomia -> P(AB) = P(A) * P(B).
        Mutta P(AB) = P(A) * P(B) ei välttämättä implikoi riippumattomuutta.


      • Anonyymi
        Anonyymi kirjoitti:

        Sinä et taida ymmärtää mitä logiikassa implikaatio tarkoittaa. Jos A -> B niin ei välttämättä B -> A.
        Tapahtumat A ja B riippumattomia -> P(AB) = P(A) * P(B).
        Mutta P(AB) = P(A) * P(B) ei välttämättä implikoi riippumattomuutta.

        Jos nyt kuitenkin tarkastaisit sen riippumattomuuden määritelmän. Tai eihän siinä taida auttaa muu kuin minun nyt kysyä sinulta, että mikä se määritelmä sinun mielestäsi on, niin alat sitä uusin silmin etsiskelemään ja tarkemmin miettimään.


      • Anonyymi
        Anonyymi kirjoitti:

        Jos nyt kuitenkin tarkastaisit sen riippumattomuuden määritelmän. Tai eihän siinä taida auttaa muu kuin minun nyt kysyä sinulta, että mikä se määritelmä sinun mielestäsi on, niin alat sitä uusin silmin etsiskelemään ja tarkemmin miettimään.

        Selitän nyt näin: Alunperin todennäköisyysavaruus muodostuu 52 kortista, Kun otetaan yksi ja pannaan se takaisin on toisen noston tnavaruus sama kuin 1. kerralla.

        Kun A ja B ovat riippumattomia niin P(AB) = P(A) * P(B). Mutta A:n ja B:n tulee olla saman tnavaruuden osajoukkoja. Ja jos 1, kortti palautetaan niin A on patojen joukko ja B on kutosten joukko. Ne ovat saman 52 alkion osajoukkoja.

        Mutta jos 1. korttia ei palauteta 2. noston tn-avaruus ei ole sama kuinn 1. noston tn-avaruus. Siinä on kaikkiaan vain 51 korttia ja se vielä riippuu siitä, mikä kortti 1. nostolla tuli. Nyt kaavaa P(AB) = P(A) * P(B) ei voi käyttää.

        Tässä tehtävässä vain nyt sattuu tulemaan sama tulos laski sitten ilman npalauttamista tai palauttaen.


      • Anonyymi
        Anonyymi kirjoitti:

        Selitän nyt näin: Alunperin todennäköisyysavaruus muodostuu 52 kortista, Kun otetaan yksi ja pannaan se takaisin on toisen noston tnavaruus sama kuin 1. kerralla.

        Kun A ja B ovat riippumattomia niin P(AB) = P(A) * P(B). Mutta A:n ja B:n tulee olla saman tnavaruuden osajoukkoja. Ja jos 1, kortti palautetaan niin A on patojen joukko ja B on kutosten joukko. Ne ovat saman 52 alkion osajoukkoja.

        Mutta jos 1. korttia ei palauteta 2. noston tn-avaruus ei ole sama kuinn 1. noston tn-avaruus. Siinä on kaikkiaan vain 51 korttia ja se vielä riippuu siitä, mikä kortti 1. nostolla tuli. Nyt kaavaa P(AB) = P(A) * P(B) ei voi käyttää.

        Tässä tehtävässä vain nyt sattuu tulemaan sama tulos laski sitten ilman npalauttamista tai palauttaen.

        Todennäköisyysavaruudeksi voidaan ottaa kaikki kahden kortin nostot pakasta. Sen koko on 52*51. Jokainen pari on yhtä todennäköinen.
        Siis X = {(c1, c2) | c1!=c2}.
        Nyt
        A = { (c1, c2) € X | c1 on pata}
        B = { (c1, c2) € X | c2 on kutonen }.


      • Anonyymi
        Anonyymi kirjoitti:

        Sinä et taida ymmärtää mitä logiikassa implikaatio tarkoittaa. Jos A -> B niin ei välttämättä B -> A.
        Tapahtumat A ja B riippumattomia -> P(AB) = P(A) * P(B).
        Mutta P(AB) = P(A) * P(B) ei välttämättä implikoi riippumattomuutta.

        Sanoin tuon väärin.
        Jos A ja B ovat saman tnavaruuden X osajoukkojaja joiden todennäköisyydet =/ 0 niin A on nriippumaton B:stä jos P(A l B) = P(A). Tällöin
        P(A l B) = P(AB) / P(B) = P(A) => P(AB) = P(A)*P(B)
        Jos taas pätee P(AB) = P(A) * P(B) niin P(Al B) = P(AB) / P(B) = (P(A) * P(B)) / P)B) = P(A) joten A on riippumaton B:stä .
        Lisäksi on P(B l A) = P(AB) / P(A) = P(B) joten myös B on riippumatonn A:sta.


    • Anonyymi

      Tapauksia jolloin -1. kortti on pata ja toinen on 6 = tapauksia joissa 1. kortti on muu pata kuin pata 6 ja toinen kortti on 6 1.kortti on pata 6 ja toinen kortti on muu 6 kuin pata 6 =
      12*4 1*3 = 51
      Kaikkiaan 2 korttia 52:sta voidaan nostaa C(52,2) = 52! / (2! * 50!) tavalla.
      Kysytty tn = 51/C(52,2) = 51*2*50! / 52! = 1/26

      • Anonyymi

        "Kaikkiaanissa" korteilla on järjestys: 1. kortti ja 2. kortti, joten sen pitäisi olla 52*51.


      • Anonyymi
        Anonyymi kirjoitti:

        "Kaikkiaanissa" korteilla on järjestys: 1. kortti ja 2. kortti, joten sen pitäisi olla 52*51.

        Olet oikeassa. Ja tuo suotuisten tapausten määrä voidaan laskea myös näin: 13*3 12*1 = 51.
        Kaikkiaan mahdollisuuksia ottaa nuo kaksi korttia on 52*51. Kysytty tn = 1/52.


      • Anonyymi
        Anonyymi kirjoitti:

        Olet oikeassa. Ja tuo suotuisten tapausten määrä voidaan laskea myös näin: 13*3 12*1 = 51.
        Kaikkiaan mahdollisuuksia ottaa nuo kaksi korttia on 52*51. Kysytty tn = 1/52.

        Tämä on apina väärä vastaus.


    • Anonyymi

      Noin 2%: 1/52 (1/4 ja 1/13).

    Ketjusta on poistettu 2 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Ja taas ammuttu kokkolassa

      Kokkolaisilta pitäisi kerätä pois kaikki ampumaset, keittiöveitset ja kaikki mikä vähänkään paukku ja on terävä.
      Kokkola
      35
      4289
    2. Kuinka kauan

      Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?
      Ikävä
      114
      1586
    3. Milli-helenalla ongelmia

      Suomen virkavallan kanssa. Eipä ole ihme kun on etsintäkuullutettu jenkkilässäkin. Vähiin käy oleskelupaikat virottarell
      Kotimaiset julkkisjuorut
      248
      1546
    4. Helena Koivu on äiti

      Mitä hyötyä on Mikko Koivulla kohdella LASTENSA äitiä huonosti . Vie lapset tutuista ympyröistä pois . Lasten kodista.
      Kotimaiset julkkisjuorut
      218
      1400
    5. Mitä siellä ABC on tapahtunut

      Tavallista isompi operaatio näkyy olevan kyseessä.
      Alajärvi
      35
      1266
    6. Ja taas kerran hallinto-oikeus että pieleen meni

      Hallinto-oikeus kumosi kunnanhallituksen päätöksen vuokratalojen pääomituksesta. https://sysmad10.oncloudos.com/cgi/DREQ
      Sysmä
      88
      1078
    7. Löydänköhän koskaan

      Sunlaista herkkää tunteellista joka jumaloi mua. Tuskin. Siksi harmittaa että asiat meni näin 🥲
      Ikävä
      132
      1072
    8. Kun näen sinut

      tulen iloiseksi. Tuskin uskallan katsoa sinua, herätät minussa niin paljon tunteita. En tunne sinua hyvin, mutta jotain
      Ikävä
      47
      1054
    9. Purra saksii taas. Hän on mielipuuhassaan.

      Nyt hän leikkaa hyvinvointialueiltamme kymmeniä miljoonia. Sotea romutetaan tylysti. Terveydenhoitoamme kurjistetaan. ht
      Maailman menoa
      267
      1031
    10. Yhdelle miehelle

      Mä kaipaan sua niin paljon. Miksi sä oot tommonen pösilö?
      Ikävä
      62
      994
    Aihe