Jos pelaan 5 kpl vaikkapa jalkapallon altavastaajia, joiden jokaisen voiton todennäköisyys on 20%, niin kuinka todennäköistä on että vähintään yksi näistä altavastaajista voittaa ottelunsa?
Osaan kyllä laskea kuinka (epä)todennäköistä on että KAIKKI voittaisivat, mutta entäpä yksi osuma? Eihän se voi olla 20%??
Entäs jos samanlaisia 20% saumat omaavia yllättäjiä pelaisi 10 kpl, sinkkuina tietysti niin että eivät ole keskenään riippuvaisia, kuinka suuri todennäköisyys tuolloin on että vähintään yksi osuu?
En ole aivan märkäkorva vedonlyönnissä ja luulen ymmärtäväni jotain todennäköisyyksistäkin, mutta ilmeisesti sitten kuitenkaan en koska tämä ei avaudu... Jos joku osaa valistaa niin etukäteen jo kiitos. Ja pelionnea! ;)
todennäköisyydestä
3
492
Vastaukset
Tarkastellaan viiden ottelun todennäköisyyksiä
kun "huonompi voittaa" todennäköisyys on 0.2 ja
"huonompi ei voita" todennäköisyys on 0.8.
Jos kullakin tapauksella on vain kaksi erilaista
tulosta, (oikein / väärin, tosi / epätosi, 0 / 1),
voidaan asioita hahmottaa binäärilukujen avulla.
Laskujen alapuolella on kuvattu erilaisia
viiden ottelun tulosmahdollisuuksia seuraavasti:
1 tarkoittaa huonomman voittoa, 0 tarkoittaa
"huonomman" häviötä tai tasapeliä:
********************
"Huonompi" voittaa 5 ottelua viidestä:
(0.2 ^ 5) = 0.00032
Mahdolliset "oikeat rivit":
11111
********************
********************
"Huonompi" voittaa 4 ottelua viidestä:
((0.2 ^ 4) * 0.8) * 5 = 0.0064
Mahdolliset "oikeat rivit":
11110
11101
11011
10111
01111
********************
********************
"Huonompi" voittaa 3 ottelua viidestä:
((0.2 ^ 3) * (0.8 ^ 2)) * 10 = 0.0512
Mahdolliset "oikeat rivit":
11100
11010
11001
10110
10101
10011
01110
01101
01011
00111
********************
********************
"Huonompi" voittaa 2 ottelua viidestä:
((0.2 ^ 2) * (0.8 ^ 3)) * 10 = 0.2048
Mahdolliset "oikeat rivit":
00011
00101
00110
01001
01010
01100
10001
10010
10100
11000
********************
********************
"Huonompi" voittaa 1 ottelua viidestä:
(0.2 * (0.8 ^ 4)) * 5 = 0.4096
Mahdolliset "oikeat rivit":
11110
11101
11011
10111
01111
********************
********************
"Huonompi" ei voita yhtään ottelua viidestä:
(0.8 ^ 5) = 0.32768
Mahdolliset "oikeat rivit":
00000
********************
********************
Vastauksena viittä ottelua koskevaan kysymykseen:
"Huonompi" ei voita yhtään ottelua viidestä:
(0.8 ^ 5) = 0.32768
"Huonompi" voittaa vähintään yhden ottelun:
1 - 0.32768 = 0.67232
Mahdollisuus prosentteina:
100 * 0.67232 = 67.232%
********************
********************
Vastauksena kymmentä ottelua koskevaan kysymykseen:
"Huonompi" ei voita yhtään ottelua kymmenestä:
0.8 ^ 10 = 0.1073741824
"Huonompi" voittaa vähintään yhden ottelun:
1 - 0.1073741824 = 0.8926258176
Mahdollisuus prosentteina:
100 * 0.8926258176 = 89.26%
********************Virheiltä ei voi näköjään välttyä,
tässä korjattu versio.
Tarkastellaan viiden ottelun todennäköisyyksiä
kun "huonompi voittaa" todennäköisyys on 0.2 ja
"huonompi ei voita" todennäköisyys on 0.8.
Jos kullakin tapauksella on vain kaksi erilaista
tulosta, (oikein / väärin, tosi / epätosi, 0 / 1),
voidaan asioita hahmottaa binäärilukujen avulla.
Laskujen alapuolella on kuvattu erilaisia
viiden ottelun tulosmahdollisuuksia seuraavasti:
1 tarkoittaa huonomman voittoa, 0 tarkoittaa
"huonomman" häviötä tai tasapeliä:
********************
"Huonompi" voittaa 5 ottelua viidestä:
(0.2 ^ 5) = 0.00032
Mahdolliset "oikeat rivit":
11111
********************
********************
"Huonompi" voittaa 4 ottelua viidestä:
((0.2 ^ 4) * 0.8) * 5 = 0.0064
Mahdolliset "oikeat rivit":
11110
11101
11011
10111
01111
********************
********************
"Huonompi" voittaa 3 ottelua viidestä:
((0.2 ^ 3) * (0.8 ^ 2)) * 10 = 0.0512
Mahdolliset "oikeat rivit":
11100
11010
11001
10110
10101
10011
01110
01101
01011
00111
********************
********************
"Huonompi" voittaa 2 ottelua viidestä:
((0.2 ^ 2) * (0.8 ^ 3)) * 10 = 0.2048
Mahdolliset "oikeat rivit":
00011
00101
00110
01001
01010
01100
10001
10010
10100
11000
********************
Korjattu kohta
********************
********************
********************
"Huonompi" voittaa 1 ottelua viidestä:
(0.2 * (0.8 ^ 4)) * 5 = 0.4096
Mahdolliset "oikeat rivit":
00001
00010
00100
01000
10000
********************
********************
********************
********************
"Huonompi" ei voita yhtään ottelua viidestä:
(0.8 ^ 5) = 0.32768
Mahdolliset "oikeat rivit":
00000
********************
********************
Vastauksena viittä ottelua koskevaan kysymykseen:
"Huonompi" ei voita yhtään ottelua viidestä:
(0.8 ^ 5) = 0.32768
"Huonompi" voittaa vähintään yhden ottelun:
1 - 0.32768 = 0.67232
Mahdollisuus prosentteina:
100 * 0.67232 = 67.232%
********************
********************
Vastauksena kymmentä ottelua koskevaan kysymykseen:
"Huonompi" ei voita yhtään ottelua kymmenestä:
0.8 ^ 10 = 0.1073741824
"Huonompi" voittaa vähintään yhden ottelun:
1 - 0.1073741824 = 0.8926258176
Mahdollisuus prosentteina:
100 * 0.8926258176 = 89.26%
********************- Joshua Tree
heikkioskari kirjoitti:
Virheiltä ei voi näköjään välttyä,
tässä korjattu versio.
Tarkastellaan viiden ottelun todennäköisyyksiä
kun "huonompi voittaa" todennäköisyys on 0.2 ja
"huonompi ei voita" todennäköisyys on 0.8.
Jos kullakin tapauksella on vain kaksi erilaista
tulosta, (oikein / väärin, tosi / epätosi, 0 / 1),
voidaan asioita hahmottaa binäärilukujen avulla.
Laskujen alapuolella on kuvattu erilaisia
viiden ottelun tulosmahdollisuuksia seuraavasti:
1 tarkoittaa huonomman voittoa, 0 tarkoittaa
"huonomman" häviötä tai tasapeliä:
********************
"Huonompi" voittaa 5 ottelua viidestä:
(0.2 ^ 5) = 0.00032
Mahdolliset "oikeat rivit":
11111
********************
********************
"Huonompi" voittaa 4 ottelua viidestä:
((0.2 ^ 4) * 0.8) * 5 = 0.0064
Mahdolliset "oikeat rivit":
11110
11101
11011
10111
01111
********************
********************
"Huonompi" voittaa 3 ottelua viidestä:
((0.2 ^ 3) * (0.8 ^ 2)) * 10 = 0.0512
Mahdolliset "oikeat rivit":
11100
11010
11001
10110
10101
10011
01110
01101
01011
00111
********************
********************
"Huonompi" voittaa 2 ottelua viidestä:
((0.2 ^ 2) * (0.8 ^ 3)) * 10 = 0.2048
Mahdolliset "oikeat rivit":
00011
00101
00110
01001
01010
01100
10001
10010
10100
11000
********************
Korjattu kohta
********************
********************
********************
"Huonompi" voittaa 1 ottelua viidestä:
(0.2 * (0.8 ^ 4)) * 5 = 0.4096
Mahdolliset "oikeat rivit":
00001
00010
00100
01000
10000
********************
********************
********************
********************
"Huonompi" ei voita yhtään ottelua viidestä:
(0.8 ^ 5) = 0.32768
Mahdolliset "oikeat rivit":
00000
********************
********************
Vastauksena viittä ottelua koskevaan kysymykseen:
"Huonompi" ei voita yhtään ottelua viidestä:
(0.8 ^ 5) = 0.32768
"Huonompi" voittaa vähintään yhden ottelun:
1 - 0.32768 = 0.67232
Mahdollisuus prosentteina:
100 * 0.67232 = 67.232%
********************
********************
Vastauksena kymmentä ottelua koskevaan kysymykseen:
"Huonompi" ei voita yhtään ottelua kymmenestä:
0.8 ^ 10 = 0.1073741824
"Huonompi" voittaa vähintään yhden ottelun:
1 - 0.1073741824 = 0.8926258176
Mahdollisuus prosentteina:
100 * 0.8926258176 = 89.26%
********************Aivan mieletön paneutuminen ja loistava vastaus!!! Kiitos todella paljon!!
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Yksi kuoli kolarissa Outokummussa
-toisen auton kuljettajaa epäillään rattijuopumuksesta. Toisen auton kyydissä oli kuljettajan lisäksi neljä ihmistä. Hei1386801Kovan viikon ilta pitäisi lakkauttaa
Käytännössä pelkkää SDP:lle ilkkumista koko ohjelma veronmaksajien kustannuksella.1585728Pakoputkipörisijä syttyi tuleen kesken ajon
Kyydissä oli 7 henkilöä, mutta hyvä onni matkassa epäonnistuneesta käyttövoimavalinnasta huolimatta, eikä kukaan loukka574474Sdp on esittänyt maatalous- ja yritystuista leikkaamista
Joihin menee 10 miljardia euroa vuosittain. Minkä vuoksi äärioikeisto änkyttää jostain vuodesta 2026, kun ei demareiden1123998Borat ärhäkkänä, syyttelee kokoomusta vilpin suojelusta
Hänen mukaansa kokoomus seuraa ”toimettomana vierestä, kun vilpilliset firmat vievät urakat rehellisten nenän edestä”, j153909Persut on SYYLLISIÄ KAIKKEEN NEGATIIVISEEN SUOMESSA
, ne haluaa neuvostoliiton putinin kanssa takaisin, shit voi valvoa kaikkea ja kaikkia, no tietty makeeta mannaa itselle413731Perussuomalaisiin minä luotan
Bensaa raaskii taas tankata ja ensi vuonna laskee ruoan verotus. Nämä muutokset parantavat pienituloisten asemaa.683466Sanna Marin pitäisi palauttaa pääministeriksi
Oikeisto "voitti" vaalit valehtelemalla äänistäjille päin naamaa, joten heidät tulisi tuomita menettämään vaalitulos ja323146- 2322908
Kokoomus kannatti aiemmin rahoitusmarkkinaveroa - kanta nyt muuttunut
Kokoomuksen linjanmuutos rahoitusmarkkinaveron suhteen on herättänyt kysymyksiä. Vielä aiemmin puolue antoi ymmärtää kan12423