fermatin kuuluisa lause

fermatti

Moi matematiikan opiskelijat ja varsinkin tytöt, jotka tuntuvat olevan fiksumpia matematiikassa. Mistä linkistä löytäisin fermat`n kuuluisan todistuksen eli suuren lauseen selkokielellä googlesta. Olen vain tavallinen insinööri enkä juuri tiedä matikasta kuin perusintegroinnit, mutta olisi hauska nähdä se suuri todistus ihan tietokoneella. Sehän lienee noin 100 sivuinen pimaska pelkkää matematiikan symboleita, mutta ihan vaan haluaisin hämmästellä sitä valtavaa työmäärää, joka siihen on mennyt 7-8 vuoden aikana.

6

431

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • algebrikko

      Fermat ei todistanut lausettaan, vaan sen teki Andrew Wiles. Todistus löytyy osoitteesta http://math.stanford.edu/~lekheng/flt/wiles.pdf Tuo on käsittääkseni ainoa validi todistus lauseelle ja jos sen haluaa selkokieliseksi, siinä joutuu opettelemaan aika paljon matikkaa.

    • Muistelen

      Joskus nähneeni dokumentin todistelusta, ja vähäisen matematiikan tuntemukseni perusteella sain käsityksen että jokin japanilainen (ehkä) matemaatikko oli suuren työn jälkeen onnistunut todistamaan että kaikki elliptiset käyrät ovat modulaarisia ja Wiles keskittyi todistamaan, että Fermaatin iso lause on elliptinen.
      Wiles taisi matkan varrella julkaista useammankin kerran todistuksensa arvioitavaksi ja todetuksi virheelliseksi, ennenkuin onnistui lopulta.

      http://fi.wikipedia.org/wiki/Taniyaman–Shimuran_lause

      Fermat huhun mukaan oli itse keksinyt lauseelleen todistuksen, ylläolevan kaltainen se ei varmastikaan ollut.

      • algebrikko

        Ei se niin mennyt. Ribet todisti, että modulaarisuuslauseesta seuraa Fermat'n lause. Sitten Wiles huomasi, että riittää osoittaa lause on voimassa puolivakaille elliptisille käyrille, jonka hän lopulta todisti. Lauseet eivät ole modulaarisia, mutta jotkut käyrät ovat. Itse en ole elliptisten tai modulaaristen käyrien asiantuntija, joten tähän kannattaa suhtautua pienellä varauksella.


    • Femat huijasi..

      Fermat keksi hienon todistuksen kun n=4, ja ilmeisesti kuvitteli että
      myös muut n arvot menisivät yhtä helposti.

      Fermatin lause saadaan todistettua, kun osoitetaan lause todeksi kun
      n on pariton alkuluku tai 4. Ja tuo n=4 todistus löytynee kaikista lukuteorian
      alkeita esittelevistä kirjoista.

      Voihan olla että Fermat todellakin oivalsi jonkin ihmeellisen tavan mutta se
      on epäuskottavaa.

      • ????

        Asiaan löysästi liittyen tässä Stieg Larssonin Millenium-trilogiassa tätä suurta lausetta, siksi sitä siinä nimitetään vaikkakin täysin väärin, raahataan mukana kahdessa viiimeisessä osassa. Kirjan päähenkilö, jonka nimeä en tähän hätään muista, myös keksii tuon saman minkä Fermatkin. Ei tietenkään paljasta hänkään sitä todistusta.


    • amatöörimatikisti

      Minusta Takeshi Saito on kirjoittanut ihan hyvän kirjan "Fermat's Last Theorem Basic Tools". Takakansi väittää, että todistus annetaan yksityiskohtaisesti, mutta siinä on paljon skipattuja todistuksia. Lopussa on kuitenkin lähdeluettelo, jossa on 56 viitettä enimmäkseen artikkeleihin mutta myös joihinkin kirjoihin. Kirjasta on tulossa jatko-osa, "Fermat's Last Theorem Basic Tools: The Proof" joka ilmeisesti vie todistuksen loppuun. Todistuksen omaksuminen ei kuitenkaan onnistu insinööritiedoin, vaan joutuu tekemään aika paljon duunia, jotta todistukset saa palautettua ZFC:hen asti.

      Todistuksen idea on seuraava. Olkoon yhtälö A^n B^n=C^n. FLT on voimassa tapauksissa, joissa eksponentti n on 3 tai 4, joten tarkastellaan tapauksia, joissa n on vähintään 5 ja alkuluku. Voidaan olettaa, että A, B ja C ovat keskenään jaottomia, 4|C 1:n ja 2|B:n. Tarkastellaan elliptistä käyrää E_{C^l,B^l}, jonka määrittelee yhtälö y^2=x(x-C^l)(x-B^l). Jos Fermat'n suurella lauseella olisi nollasta poikkeva ratkaisu kun n on vähintään viisi, on E:n oltava modulaarinen, ja l-torsioalkioiden ryhmä E[l] on modulaarinen ja tasoa 2. Toisaalta ei ole olemassa nollasta poikkeavaa modulimuotoa, jonka taso on 1 tai 2. Tämä on ristiriita.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Pystyisitkö pitämään

      Näppejä erossa jos tulisi siihen tilaisuus
      Ikävä
      68
      6957
    2. Yritystuet 10 mrd. vuodessa, eli yrittäjäriski valtiolla kuten kommunismissa

      Pelkästään Viking Linen viinanhakuristeilyitä sponsoroidaan 20 miljoonalla eurolla vuosittain. Dieselin verotukikin on
      Yrittäjyys
      63
      6813
    3. Sture Fjäder haluaa tuensaajien nimet julki

      Kokoomuspoliitikko haluaa yli 800 euroa kuukaudessa tukia saavien nimet julki. Ehkä olisi syytä julkaista myös kuvat? h
      Maailman menoa
      149
      5473
    4. Luotathan siihen tunteeseen, joka välillämme on?

      Uskothan myös, että se kestää tämän? Kaipaan sinua valtavasti. Vielä tehdään yhdessä tästä jotain ihmeellistä ja kaunist
      Ikävä
      50
      4513
    5. En saa sua mielestäni vaikka tekisin mitä

      Mikä tähän auttaa.. ei mikään. Edes aika. Kaivan sut kohta vaikka kivenkolosta että saan kysyä haluatko sinäkin💛
      Ikävä
      20
      4109
    6. Onnettomuus

      Hukkajärventiellä kolaroi lavetti ja henkilöauto. Uutista ei missään! Hys hys ollaanko hiljaa tästäkin?
      Kuhmo
      5
      3720
    7. Milloin viimeksi näit kaivattusi?

      Toimisitko nyt toisin kuin siinä tilanteessa teit?
      Ikävä
      37
      3278
    8. Tuntuuko ettet tiedä

      Enää miten toimia mun suhteen. Kun en taida tietää itsekään
      Ikävä
      31
      3267
    9. Maahanmuuttajat torjuvat marjanpoiminnan - "emme ole rottia"

      Ruotsalaisen journalistin selvitys paljasti, miksi maahanmuuttajat kieltäytyvät työstä. Taustalla vaikuttavat kulttuuris
      Maailman menoa
      76
      2792
    10. Köysi alkaa kiristyä putinin kaulalla....

      Putin pelkää eniten juuri omaa porukkaansa, ja siihen on varmasti syytä kun sota ei ole mennyt hyvin, tappiot ovat valta
      Maailman menoa
      40
      2279
    Aihe