Todennäköisyyskysymys

EiOoMatikkaPää

Eli mulla on käytössä hyvin pitkä jono "täydellisen" sattunnaislukugeneraattorin tekemiä ykkösiä ja nollia 101011001010001100101011001010101...

Haluan siis tietää kuinka monta numeroa täytyy mennä eteenpäin jotta saavun kohtaan jossa 50% tai x% todennäköisyydellä minulla on 8 samaa tai x samaa perättäistä ykköstä tai nollaa? 100%:sella varmuudellahan tuota kohtaa ei kait voi löytää?

Kiitos kaikista asiallisista vastauksista.

5

96

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Missä piilee peräkkäiset


      Vedetään vähän hatusta tai hihasta. Koska täällä
      suurin osa vastauksista on "puuta heinää" ei ole
      suurikaan häpeä jos minäkin jo kolmannen kerran
      erehdyn näillä palstoilla.

      Mahdollisuus, että kahdeksan ensimmäistä merkkiä
      ovat nollia on (1 / 2) potenssiin 8 = 1 / 256.

      Mahdollisuus, että kahdeksan ensimmäistä merkkiä
      ovat ykkösiä on (1 / 2) potenssiin 8 = 1 / 256.

      Mahdollisuus, että kahdeksan ensimmäistä merkkiä
      ovat "nollasuora tai ykkössuora" on (1 1) / 256.

      Edellä mainitut mahdollisuudet pätevät myös muissa
      kahdeksan binäärinumeron (0 tai 1) joukoissa.

      "Voittamattomuusmahdollisuuden kautta" laskemalla
      saamme ehkä helpoimmin asian selvitettyä:
      Ei "putkea" ensimmäisissä kahdeksassa numerossa =
      (256 - 2) / 256 = 0.9921875

      Ei putkea kahdessa jonossa: 0.9921875 ^ 2 = 0.984436
      Ei putkea kolmessa jonossa: 0.9921875 ^ 3 = 0.976745
      ja niin edelleen...

      Laskukoneella "haarukoimalla" tulemme tulokseen, että
      "voittamattomuustodennäköisyys" alittaa 0.50:n rajan
      89:ssä "arvonnassa": 0.9921875 ^ 89 = 0.497558

      Nyt voimme laskea todennäköisyyden tapauksille:
      "Vähintään yksi 8-putki" = 1 - 0.497558 = 0.502442

      Koska alkuperäinen binääriluku oli "satunnainen" niin
      voinemme päätellä, että kuljettaessa bittijonoa merkki
      kerrallaan siirtyen, saavutamme 50%:n todennäköisyyden
      nolla- tai ykkösputken löytymiselle paikassa 89 - 96.

      Samalla periaatteella voimme selvittää myös x-pituisten
      z-todennäköisyydet.
      Itse en nyt enää mokomaa jaksa tähän laskeskella..

      Ps. Jos alkuperäisen kysyjän tarkoituksena on selvittää
      kenorivien numeroiden esiintymisihmeitä ei tämä toimi.
      Kenorivihän ei ole satunnainen binääriluku, vaan voimme
      sen ajatella ns. vakiopainoiseksi luvuksi, jonka pituus
      on 70 ja paino on 20.

    • Päädyin tällaiseen:

      (x-7) = 2^6
      = 71

    • zsexdrcft

      Sain heikkioskarin kanssa samanlaisen tuloksen. Laskin olettamalla, että numeroita on sellainen sarja (vähintään 8 numeroa), jossa tuo 8 peräkkäisen ehto ei täyty. Kysytään, mikä on todennäköisyys, ettei ehto täyty, kun sarjaan lisätään yksi numero. Se ei täyty, jos alkuperäisen sarjan seitsemän viimeistä numeroa eivät ole ykkösiä tai nollia, tästä todennäköisyys 126/128. Se ei myöskään täyty, jos alkuperäisen sarjan seitsemän viimeistä numeroa ovat ykkösiä (tai nollia), mutta uusi numero ei ole ykkönen (tai nolla vastaavasti). Tästä todennäköisyys (2/128)*(1/2)=1/128. Yhteenlaskettu todennäköisyys on 127/128, eli vakiokerroin peräkkäisten numeron lisäys-vaiheiden välillä. Sarjalla, jossa on n (>7) numeroa, todennäköisyys "ei 8 peräkkäistä" on siis (127/128)^(n-7). Jos sen arvoksi asetetaan < 1/2, saadaan n> 95.

    • E.d.K.

      Yritin selvitä helpommalla, eli suotuisten tapahtumien suhteesta kaikkiin mahdollisiin.

      Jos arvotaan peräkkäin n kappaletta 1 tai 0, niin kaikkien yhdistelmien lukumäärä on 2^n.

      8-peräkkäistä samaa merkkiä voi olla n-7 kpl joissa n-8 kpl kumpia hyvänsä ja ne 8 voi olla 1 tai 0 joten suotuisten yhdistelmien määrä =
      = 2*(n-7)*2^(n-8) ja kun sen suhde 2^n olisi 1/2 , päädytään lukemaan n=2^6 7.

      Tämä hyväksyy siis myös tapaukset joissa peräkkäisiä samoja on useampiakin kuin 8, mutta oletin että haettiin "vähintään" 8-peräkkäin.

      • zsexdrcft

        Eli sun laskelmassasi on kyse "vähintään 8 samaa peräkkäin" odotusarvosta n-pituisessa binäärijonossa. Tätä odotusarvoa kai lisää, jos jonossa on esim. kaksi 8-peräkkäistä ja myös 9-peräkkäistä lasketaan kahdeksi 8-peräkkäiseksi.
        Täytyy mennä alkuperäiseen tehtävänasetteluun, mikä kuului "kuinka monta numeroa täytyy mennä eteenpäin jotta saavun kohtaan jossa 50% todennäköisyydellä minulla on 8 samaa", joka on kieltämätä hieman epämääräinen. Jos tuota testattaisiin käytännössä, itse tekisin sen niin, että arpoisin numeroita kunnes tulisi ensimmäinen 8-peräkkäistä, ja laskisin näin saatujen lukojonojen pituuksista keskikohdan. Näihin lukujonoihin ei sisältyisi useampia 8-peräkkäisiä tai "enemmän kuin 8 peräkkäisiä".


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Toiselle puolikkaalleni

      Sinulla ei taida olla kaikki nyt ihan hyvin? Minua itketti eilen kauheasti, sinunko itkuja itkin? Kyllä kaikki selviää j
      Ikävä
      42
      2214
    2. Pysy kaukana musta

      Ja kaikista mun läheisistä. Oon tosissani.
      Ikävä
      24
      1740
    3. Katu täyttyy askelista...

      Hyvää sunnuntaita ja hyvää jatkoa jos näin...Vettä sataa, mutta hyvä vaan, ainakin kasveille.
      Ikävä
      27
      1425
    4. Kuvaile kaivattusi

      ulkonäköä. 💡
      Ikävä
      108
      1247
    5. Näin susta unta

      Teit siinä temppuja ja kurkit huomaanko. Niinkuin sun tarttis sitä epäillä. Öitä tuimalle!
      Ikävä
      15
      1219
    6. Mitä hämminkiä Halkokarilla?

      Poliiseja ja ambulansseja pyörii, laukauksia kuultu.
      Kokkola
      18
      1035
    7. Tiedätkö nainen sen tunteen

      Kun toinen tulee jossain vastaan. Naama leviää hymyyn kuin hangonkeksi. Mulla on susta semmonen,tunne.
      Ikävä
      71
      944
    8. Kauniit ihmiset ei ole sinkkuja, se on karu fakta

      Ihmisessä on lähes poikkeuksetta aina jotain vikaa jos hän pysyy sinkkuna pitkään. Sori kun sanon tän näin suoraan, mut
      Ikävä
      107
      864
    9. Kristinusko - epätoivoinen yritys pelastaa ihmiset jumalalta

      Ei ole mitään sellaista, mitä pitää "pelastua". Lukuun ottamatta tietysti ”jumalan” (sen ei jumalan, joka väittää oleva
      Hindulaisuus
      333
      853
    10. Mikset päästä irti ja hae apua

      Mt ongelmiisi. En vaan voi ikinä enää luottaa sinuun, pelkään sinua ja toivon löytäväni jonkun muun. Rahaa sulla on saad
      Ikävä
      74
      846
    Aihe