Todennäköisyyskysymys

EiOoMatikkaPää

Eli mulla on käytössä hyvin pitkä jono "täydellisen" sattunnaislukugeneraattorin tekemiä ykkösiä ja nollia 101011001010001100101011001010101...

Haluan siis tietää kuinka monta numeroa täytyy mennä eteenpäin jotta saavun kohtaan jossa 50% tai x% todennäköisyydellä minulla on 8 samaa tai x samaa perättäistä ykköstä tai nollaa? 100%:sella varmuudellahan tuota kohtaa ei kait voi löytää?

Kiitos kaikista asiallisista vastauksista.

5

106

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Missä piilee peräkkäiset


      Vedetään vähän hatusta tai hihasta. Koska täällä
      suurin osa vastauksista on "puuta heinää" ei ole
      suurikaan häpeä jos minäkin jo kolmannen kerran
      erehdyn näillä palstoilla.

      Mahdollisuus, että kahdeksan ensimmäistä merkkiä
      ovat nollia on (1 / 2) potenssiin 8 = 1 / 256.

      Mahdollisuus, että kahdeksan ensimmäistä merkkiä
      ovat ykkösiä on (1 / 2) potenssiin 8 = 1 / 256.

      Mahdollisuus, että kahdeksan ensimmäistä merkkiä
      ovat "nollasuora tai ykkössuora" on (1 1) / 256.

      Edellä mainitut mahdollisuudet pätevät myös muissa
      kahdeksan binäärinumeron (0 tai 1) joukoissa.

      "Voittamattomuusmahdollisuuden kautta" laskemalla
      saamme ehkä helpoimmin asian selvitettyä:
      Ei "putkea" ensimmäisissä kahdeksassa numerossa =
      (256 - 2) / 256 = 0.9921875

      Ei putkea kahdessa jonossa: 0.9921875 ^ 2 = 0.984436
      Ei putkea kolmessa jonossa: 0.9921875 ^ 3 = 0.976745
      ja niin edelleen...

      Laskukoneella "haarukoimalla" tulemme tulokseen, että
      "voittamattomuustodennäköisyys" alittaa 0.50:n rajan
      89:ssä "arvonnassa": 0.9921875 ^ 89 = 0.497558

      Nyt voimme laskea todennäköisyyden tapauksille:
      "Vähintään yksi 8-putki" = 1 - 0.497558 = 0.502442

      Koska alkuperäinen binääriluku oli "satunnainen" niin
      voinemme päätellä, että kuljettaessa bittijonoa merkki
      kerrallaan siirtyen, saavutamme 50%:n todennäköisyyden
      nolla- tai ykkösputken löytymiselle paikassa 89 - 96.

      Samalla periaatteella voimme selvittää myös x-pituisten
      z-todennäköisyydet.
      Itse en nyt enää mokomaa jaksa tähän laskeskella..

      Ps. Jos alkuperäisen kysyjän tarkoituksena on selvittää
      kenorivien numeroiden esiintymisihmeitä ei tämä toimi.
      Kenorivihän ei ole satunnainen binääriluku, vaan voimme
      sen ajatella ns. vakiopainoiseksi luvuksi, jonka pituus
      on 70 ja paino on 20.

    • Päädyin tällaiseen:

      (x-7) = 2^6
      = 71

    • zsexdrcft

      Sain heikkioskarin kanssa samanlaisen tuloksen. Laskin olettamalla, että numeroita on sellainen sarja (vähintään 8 numeroa), jossa tuo 8 peräkkäisen ehto ei täyty. Kysytään, mikä on todennäköisyys, ettei ehto täyty, kun sarjaan lisätään yksi numero. Se ei täyty, jos alkuperäisen sarjan seitsemän viimeistä numeroa eivät ole ykkösiä tai nollia, tästä todennäköisyys 126/128. Se ei myöskään täyty, jos alkuperäisen sarjan seitsemän viimeistä numeroa ovat ykkösiä (tai nollia), mutta uusi numero ei ole ykkönen (tai nolla vastaavasti). Tästä todennäköisyys (2/128)*(1/2)=1/128. Yhteenlaskettu todennäköisyys on 127/128, eli vakiokerroin peräkkäisten numeron lisäys-vaiheiden välillä. Sarjalla, jossa on n (>7) numeroa, todennäköisyys "ei 8 peräkkäistä" on siis (127/128)^(n-7). Jos sen arvoksi asetetaan < 1/2, saadaan n> 95.

    • E.d.K.

      Yritin selvitä helpommalla, eli suotuisten tapahtumien suhteesta kaikkiin mahdollisiin.

      Jos arvotaan peräkkäin n kappaletta 1 tai 0, niin kaikkien yhdistelmien lukumäärä on 2^n.

      8-peräkkäistä samaa merkkiä voi olla n-7 kpl joissa n-8 kpl kumpia hyvänsä ja ne 8 voi olla 1 tai 0 joten suotuisten yhdistelmien määrä =
      = 2*(n-7)*2^(n-8) ja kun sen suhde 2^n olisi 1/2 , päädytään lukemaan n=2^6 7.

      Tämä hyväksyy siis myös tapaukset joissa peräkkäisiä samoja on useampiakin kuin 8, mutta oletin että haettiin "vähintään" 8-peräkkäin.

      • zsexdrcft

        Eli sun laskelmassasi on kyse "vähintään 8 samaa peräkkäin" odotusarvosta n-pituisessa binäärijonossa. Tätä odotusarvoa kai lisää, jos jonossa on esim. kaksi 8-peräkkäistä ja myös 9-peräkkäistä lasketaan kahdeksi 8-peräkkäiseksi.
        Täytyy mennä alkuperäiseen tehtävänasetteluun, mikä kuului "kuinka monta numeroa täytyy mennä eteenpäin jotta saavun kohtaan jossa 50% todennäköisyydellä minulla on 8 samaa", joka on kieltämätä hieman epämääräinen. Jos tuota testattaisiin käytännössä, itse tekisin sen niin, että arpoisin numeroita kunnes tulisi ensimmäinen 8-peräkkäistä, ja laskisin näin saatujen lukojonojen pituuksista keskikohdan. Näihin lukujonoihin ei sisältyisi useampia 8-peräkkäisiä tai "enemmän kuin 8 peräkkäisiä".


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Yritystuet 10 mrd. vuodessa, eli yrittäjäriski valtiolla kuten kommunismissa

      Pelkästään Viking Linen viinanhakuristeilyitä sponsoroidaan 20 miljoonalla eurolla vuosittain. Dieselin verotukikin on
      Yrittäjyys
      85
      7681
    2. Pystyisitkö pitämään

      Näppejä erossa jos tulisi siihen tilaisuus
      Ikävä
      77
      7660
    3. Sture Fjäder haluaa tuensaajien nimet julki

      Kokoomuspoliitikko haluaa yli 800 euroa kuukaudessa tukia saavien nimet julki. Ehkä olisi syytä julkaista myös kuvat? h
      Maailman menoa
      166
      6089
    4. Luotathan siihen tunteeseen, joka välillämme on?

      Uskothan myös, että se kestää tämän? Kaipaan sinua valtavasti. Vielä tehdään yhdessä tästä jotain ihmeellistä ja kaunist
      Ikävä
      55
      4996
    5. En saa sua mielestäni vaikka tekisin mitä

      Mikä tähän auttaa.. ei mikään. Edes aika. Kaivan sut kohta vaikka kivenkolosta että saan kysyä haluatko sinäkin💛
      Ikävä
      20
      4179
    6. Onnettomuus

      Hukkajärventiellä kolaroi lavetti ja henkilöauto. Uutista ei missään! Hys hys ollaanko hiljaa tästäkin?
      Kuhmo
      5
      3910
    7. Milloin viimeksi näit kaivattusi?

      Toimisitko nyt toisin kuin siinä tilanteessa teit?
      Ikävä
      38
      3642
    8. Tuntuuko ettet tiedä

      Enää miten toimia mun suhteen. Kun en taida tietää itsekään
      Ikävä
      31
      3557
    9. Ruotsalaistoimittaja: "Sanna Marinin saunominen saa minut häpeämään"

      Sanna Marinin kirja saa täyslaidallisen ruotsalaislehti Expressenissä perjantaina julkaistussa kolumnissa.....voi itku..
      Maailman menoa
      27
      3495
    10. Maahanmuuttajat torjuvat marjanpoiminnan - "emme ole rottia"

      Ruotsalaisen journalistin selvitys paljasti, miksi maahanmuuttajat kieltäytyvät työstä. Taustalla vaikuttavat kulttuuris
      Maailman menoa
      104
      3252
    Aihe