limes

ei ymmärrä

En ymmärrä seuraavan raja-arvon laskemista:

lim (2 - x/2)^(1/x-2)
x->2

ainakin eksponentissa x ei voi olla 2. 0^0 on selvästi epämääräinen muoto. Onko Neperin luvun (1 1/x)^x avulla temppuilusta tässä apua. Toisaalta tuo on x-2 juuri luvusta 2 - x/2.

L'Hospitalia ei voi käyttää, enkä ole kokeillut olisiko siitä apua. Toisin sanoen saattaisiko se lausekkeen muotoon, joka ei olisi epämääräinen.

Toinen mitä mietin on lim x->0 (3^x - 2^x) / x

ääretön - ääretön on jälleen epämääräinen muoto. Vaikeita nämä temppuilut mielestäni.

Entä vielä tämä kolmas

lim x ->0 ln(x 1) - x / xsinx

Voiko tuota puristaa Sandwich periaatteen avulla

muotoon 1

8

820

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • antti

      Et tarvitse mitään hienoja periaatteita tai lauseita. Perussarjakehitelmät riittää ratkaisuun.

      Ensimmäisessä käytetään Taylorin sarjaa:
      (2-x/2)^(1/x-2)
      =1 3(x-2)/4 jne
      -> 1, kun x->2

      Toisessakin lasketaan 3^x:n ja 2^x:n Taylorin sarjat:
      3^x=1 x*ln(3) x^2*1/2(ln3)^2 jne
      2^x=1 x*ln(2) x^2*1/2(ln2)^2 jne
      eli
      (3^x - 2^x)/x
      =ln(3)-ln(2) P(x), ja tuo P(0)=0
      eli tämän raja-arvo on ln(3)-ln(2)

      Kolmannessa oletin, että tarkoitit lauseketta (ln(x 1)-x)/(x*sinx). Ilman sulkuja tuo olisi aika triviaali. Otetaan ln(x 1):n ja sinx:n sarjakehitelmät. En jaksa kirjoittaa, mutta periaate on, että otetaan ne sarjakehitelmät ja lavennetaan x^2:lla. Raja-arvoksi tulee -1/2.

      • antti

        Tuo ensimmäisen kohdan vastaukseni on ihan puppua. Siis kyseessä piti ilmeisesti olla lauseke
        ((2-x)/2)^(1/(x-2)). Tuohan on sama kuin
        (1/2)^(1/(x-2))*(2-x)^(1/(x-2))
        Tuo lähestyy 0:aa, en kyllä oikein osaa perustella sitä. Riittääköhän perusteeksi, että eksponentiaalinen kasvu on voimakkaampaa kuin polynomiaalinen? Ei varmaan.


    • Varmaan tuossa ensiksi tarkoitat jotakin muuta kuin mitä kirjoitat, koska ongelmassa ei ole muutoin mitään vaikeutta. Onko lausekkeesi

      lim ((2 - x)/2)^(1/(x-2))
      x->2

      vai kerrassaan jotakin muuta?

    • Sitä olisi kannattanut pysyä luennolla hereillä tai sitten käyttää sitä l'Hospitalin sääntöä. Kun kirjoittaa ensimmäisen eksponenttimuodossa (siis e^ln[alkuperäinen lauseke])saadaan eksponenttiin lauseke, joka on muotoa 0/0. Koska eksponenttifunktio on jatkuva, pätee:
      lim e^f(x)=e^lim f(x)
      Eli l'Hospitalilla tutkit eksponentin lauseketta ja sijoitat sitten saamasi arvon. Tulos on e^-1/2.
      Toinen kohta on suoraan muotoa 0/0, sillä eikös vain a^0 (a reaalinen ja erisuuri kuin nolla) ole 1 ja siis 1-1=0 ? Kunhan vain muistaa, miten a^x derivoidaan oikein... Täältä lopulta saadaan ln(3/2)
      Viimeisessä ei myöskään ole mitään ihmeellistä, jos vain olen tulkinnut sen oikein.
      Jos tehtävä todella oli lim ln(1 x)-x/[x*sinx]
      x->0
      niin ensimmäinen termi lähenee nollaa ja toinen termi - ääretöntä. Oliko tässä jokin ongelma?

    • Eugen

      Jos ongelma on:


      Lim((2-(x/2))^(1/(x-2))), kun x->2

      Tällöin vastaus on e^-(1/2). Helppoa ja hauskaa...

      • Eugen

        Lim((3^x-2^x)/x),x->0
        Vastaus: ln(3/2)


        Lim((ln(x 1)-x)/(xsinx)),x->0
        vastaus: -1/2


        Mikä näissä on vaikeata.????


      • mathman
        Eugen kirjoitti:

        Lim((3^x-2^x)/x),x->0
        Vastaus: ln(3/2)


        Lim((ln(x 1)-x)/(xsinx)),x->0
        vastaus: -1/2


        Mikä näissä on vaikeata.????

        Mathematica, matlab, maple?


      • gastrulli
        mathman kirjoitti:

        Mathematica, matlab, maple?

        tai wolfram alpha


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Mitään järkeä?

      Että ollaan erillään? Kummankin pää on kovilla.
      Ikävä
      117
      1587
    2. Noniin rakas

      Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi
      Ikävä
      99
      1448
    3. Lasten hyväksikäyttö netissä - Joka 3. nuori on saanut seksuaalisen yhteydenoton pedofiililtä

      Järkyttävää! Lapsiin kohdistuva seksuaalinen hyväksikäyttö verkossa on yhä pahempi ongelma. Ulkolinja: Lasten hyväksikäy
      Maailman menoa
      35
      829
    4. Multa sulle

      Pyörit 24/7 mielessä, kuljet mun mukana, mielessä kyselen sun mielipiteitä, vitsailen sulle, olen sydän auki, aitona. M
      Ikävä
      26
      774
    5. Nainen, olen tutkinut sinua paljon

      Salaisuutesi ei ole minulle salaisuus. Ehkä teimme jonkinlaista vaihtokauppaa kun tutkisimme toisiamme. Meillä oli kumm
      Ikävä
      50
      726
    6. Okei nyt mä ymmärrän

      Olet siis noin rakastunut, se selittää. Onneksesi tunne on molemminpuolinen 😘
      Ikävä
      56
      688
    7. Olet myös vähän ärsyttävä

      Tuntuu, että olet tahallaan nuin vaikeasti tavoiteltava. En tiedä kauanko jaksan tätä näin.
      Ikävä
      37
      680
    8. Kumpi vetoaa enemmän sinuun

      Kaivatun ulkonäkö vai persoonallisuus? Ulkonäössä kasvot vai vartalo? Mikä luonteessa viehättää eniten? Mikä ulkonäössä?
      Ikävä
      34
      678
    9. Mies, eihän sulla ole vaimoa tai naisystävää?

      Minusta tuntuu jotenkin, että olisit eronnut joskus, vaikka en edes tiedä onko se totta. Jos oletkin oikeasti edelleen s
      Ikävä
      39
      650
    10. Onko sulla empatiakykyä?

      Etkö tajua yhtään miltä tämä tuntuu minusta? Minä ainakin yritän ymmärtää miltä sinusta voisi tuntua. En usko, että olet
      Ikävä
      37
      643
    Aihe