Hei, voiko näin olla?
sqrt((-1)*(-1))=sqrt(-1)*sqrt(-1)=sqrt(i^2)*sqrt(i^2)=|i|*|i|=i^2=-1
vaikka toisaalta
sqrt((-1)*(-1))=sqrt(1)=1
kompleksilukuihin liittyvä ongelma
9
98
Vastaukset
- Anonyymi
Kerro, mitä tarkoittaa |i| ja miten siihen päädyit?
- Anonyymi
Tarkoitin siis i:llä imaginääriyksikköä.
i^2=-1
Kun luvun toisesta potenssista otetaan neliöjuuri, jää sen itseisarvo, eikö vain? - Anonyymi
Itseisarvo ei voi olla negatiivinen, taliaivo.
- Anonyymi
Toi aloitus sqrt((-1)*(-1))=sqrt(-1)*sqrt(-1) on jo heti false
- Anonyymi
Kokeillaas saadaanko toi linkki näkyyn:
https://www.quora.com/What-is-the-theoretical-mistake-in-1-sqrt-1-1-sqrt-1-sqrt-1-i-2
- Anonyymi
Ongelma on siis siinä, että sqrt(-1) voi saada kaksi arvoa, i ja -i. Molemmat ovat yhtälön x^2=-1 ratkaisuja.
Laskusääntö sqrt(AB)= sqrt(A)*sqrt(B) pätee kun A ja B ovat ei-negatiivisia reaalilukuja.
Kompleksiluvun itseisarvo on aina joko nolla tai nollaa suurempi reaaliluku. Palstalta löytyy ketju "Outo todistus", jonka nimimerkki "Järkisyitä" aloitti 16.10.2018 20:26.
Vastasin siihen kahdella kommentilla, 17.10.2018 16:52 ja 20.10 2018 10:21.
Lue sieltä asian nselostus, en viitsi toistaa tässä samoja juttuja.- Anonyymi
Ylimääräisenä huomautuksena:
Kompleksilukujen joukossa "itseisarvo" on nimeltään moduli ja |i| = 1, ei i.- Anonyymi
Kyllä itseisarvo on ihan validi termi. Voidaan käyttää myös tuota ilmaisua "moduli". Tämä tulee siitä, että jos z = x i y niin l z l = sqrt(x^2 y^2).Napakoordinaateissa z = r e^(it) missä t on luvun z argumentti ja r sen moduli eli itseisarvo.
i = 0 1 i joten l i l = sqrt(0^2 1^2) = 1
i = e^(i (pii/2)) joten l i l = 1.Luvun i moduli on 1 ja argumentti pii/2.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Theermannilla kulkee!
Vouti vie kaiken mikä mieheltä irti lähtee ja palstan naiset syyttävät tilanteesta kilpaa eri naisia. Miehellä on elämän1117317- 475246
Esivaihdevuodet, menopaussi
https://www.pihlajalinna.fi/palvelut/yksityisasiakkaat/terveys/esivaihdevuodet-eli-premenopaussi Täällä kun puhutaan pa562961Tänään taas tuli pari-kolme juttua
Jotka niin mielelläni jakaisin sun kanssa. Niin paljon elämää jaettavana ja niin selkeä paikka sinulle. Mutta ymmärrän62414Kuhmo tekisi perässä
Lomauttakaa kaupungin talolta turhat lattiankuluttajat pois, kuten naapuripitäjä101468Suomi julkaisi varautumisoppaan
Että sellanen tappaus. Kun kriisitilanne iskee, niin on mentävä nettiin ja luettava ohjeet suomi.fi -sivuilta. Onkohan j1911348Olen jälleen pahoillani
Harjoittamastani henkisestä väkivallasta palstan välityksellä. Kyllä ne voi vaikuttaa jotenkin mieleen, vaikka ei itsell921083Ukraina sai luvan vastata ohjuksin Venäjän lueelle
Mediatietojen mukaan Yhdysvallat on antanut Ukrainalle luvan iskeä pitkän kantaman ohjuksilla Venäjälle. Ylen kirjeenvai3101018Miksi putin ei valinnut ensimmäiseksi kohteekseen Suomea?
Olisiko ollut sittenkin helpompi kohde?225958Oot vaan niin hellä
Ja lämmin luonteeltasi, että rakastan sitä yli kaiken. Oot ehkä tietämättäsi auttanut mua todella paljon. Auttaisit tämä30896