Hei, voiko näin olla?
sqrt((-1)*(-1))=sqrt(-1)*sqrt(-1)=sqrt(i^2)*sqrt(i^2)=|i|*|i|=i^2=-1
vaikka toisaalta
sqrt((-1)*(-1))=sqrt(1)=1
kompleksilukuihin liittyvä ongelma
9
135
Vastaukset
- Anonyymi
Kerro, mitä tarkoittaa |i| ja miten siihen päädyit?
- Anonyymi
Tarkoitin siis i:llä imaginääriyksikköä.
i^2=-1
Kun luvun toisesta potenssista otetaan neliöjuuri, jää sen itseisarvo, eikö vain? - Anonyymi
Itseisarvo ei voi olla negatiivinen, taliaivo.
- Anonyymi
Toi aloitus sqrt((-1)*(-1))=sqrt(-1)*sqrt(-1) on jo heti false
- Anonyymi
Kokeillaas saadaanko toi linkki näkyyn:
https://www.quora.com/What-is-the-theoretical-mistake-in-1-sqrt-1-1-sqrt-1-sqrt-1-i-2
- Anonyymi
Ongelma on siis siinä, että sqrt(-1) voi saada kaksi arvoa, i ja -i. Molemmat ovat yhtälön x^2=-1 ratkaisuja.
Laskusääntö sqrt(AB)= sqrt(A)*sqrt(B) pätee kun A ja B ovat ei-negatiivisia reaalilukuja.
Kompleksiluvun itseisarvo on aina joko nolla tai nollaa suurempi reaaliluku. Palstalta löytyy ketju "Outo todistus", jonka nimimerkki "Järkisyitä" aloitti 16.10.2018 20:26.
Vastasin siihen kahdella kommentilla, 17.10.2018 16:52 ja 20.10 2018 10:21.
Lue sieltä asian nselostus, en viitsi toistaa tässä samoja juttuja.- Anonyymi
Ylimääräisenä huomautuksena:
Kompleksilukujen joukossa "itseisarvo" on nimeltään moduli ja |i| = 1, ei i.- Anonyymi
Kyllä itseisarvo on ihan validi termi. Voidaan käyttää myös tuota ilmaisua "moduli". Tämä tulee siitä, että jos z = x i y niin l z l = sqrt(x^2 y^2).Napakoordinaateissa z = r e^(it) missä t on luvun z argumentti ja r sen moduli eli itseisarvo.
i = 0 1 i joten l i l = sqrt(0^2 1^2) = 1
i = e^(i (pii/2)) joten l i l = 1.Luvun i moduli on 1 ja argumentti pii/2.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
NO NIIN! Nyt on sitten prinsessa Sannan sädekehä lopullisesti rikottu
narsistia ei kannata enää kuin ne fanaattisimmat kulttilaiset, jotka ovat myös sitä Suomen heikkoälyisintä sakkia. Kun1164765Kansa haluaa Marinin hallituksen takaisin ja Orpon pois
Suomen kansa on nyt ilmoittanut millaisen hallituksen Suomi tarvitsee. "Suomalaisten suosikki seuraavaksi hallituspohja1834489Mikä piirre kaivatussa on sinulle se juttu?
Tunnetko kaivattuasi vai onko hän haavekuva, jota et edes tunne? Joskus tää asia ei ole niin selvää.1171922- 4031701
HihhuIi-Päivi täpinöissään Viktorin tapaamisesta
Eiköhän nyt kaikille ole vihdoin selvää kenen joukoissa tämäkin putinisti seisoo. https://www.iltalehti.fi/politiikka/a331462Ensitreffit Matti ei vaikene enää - Rehellinen tilitys epäonnistuneesta suhteesta Elisaan
Häntä pystyyn, Matti! Olet mahtava tyyppi ja varmasti “se oikea” löytyy vielä! Elisan kanssa ei nyt vaan sitten natsann61199Upeeta! Rauha tulee pian!
Hieno suunnitelma ja se on toteutumassa alle kahdessa viikossa. Jihuu! Tätä on odotettukin, nyt se tulee! https://www.is3711185- 741110
- 741055
- 92988