Hei, voiko näin olla?
sqrt((-1)*(-1))=sqrt(-1)*sqrt(-1)=sqrt(i^2)*sqrt(i^2)=|i|*|i|=i^2=-1
vaikka toisaalta
sqrt((-1)*(-1))=sqrt(1)=1
kompleksilukuihin liittyvä ongelma
9
151
Vastaukset
- Anonyymi
Kerro, mitä tarkoittaa |i| ja miten siihen päädyit?
- Anonyymi
Tarkoitin siis i:llä imaginääriyksikköä.
i^2=-1
Kun luvun toisesta potenssista otetaan neliöjuuri, jää sen itseisarvo, eikö vain? - Anonyymi
Itseisarvo ei voi olla negatiivinen, taliaivo.
- Anonyymi
Toi aloitus sqrt((-1)*(-1))=sqrt(-1)*sqrt(-1) on jo heti false
- Anonyymi
Kokeillaas saadaanko toi linkki näkyyn:
https://www.quora.com/What-is-the-theoretical-mistake-in-1-sqrt-1-1-sqrt-1-sqrt-1-i-2
- Anonyymi
Ongelma on siis siinä, että sqrt(-1) voi saada kaksi arvoa, i ja -i. Molemmat ovat yhtälön x^2=-1 ratkaisuja.
Laskusääntö sqrt(AB)= sqrt(A)*sqrt(B) pätee kun A ja B ovat ei-negatiivisia reaalilukuja.
Kompleksiluvun itseisarvo on aina joko nolla tai nollaa suurempi reaaliluku. Palstalta löytyy ketju "Outo todistus", jonka nimimerkki "Järkisyitä" aloitti 16.10.2018 20:26.
Vastasin siihen kahdella kommentilla, 17.10.2018 16:52 ja 20.10 2018 10:21.
Lue sieltä asian nselostus, en viitsi toistaa tässä samoja juttuja.- Anonyymi
Ylimääräisenä huomautuksena:
Kompleksilukujen joukossa "itseisarvo" on nimeltään moduli ja |i| = 1, ei i.- Anonyymi
Kyllä itseisarvo on ihan validi termi. Voidaan käyttää myös tuota ilmaisua "moduli". Tämä tulee siitä, että jos z = x i y niin l z l = sqrt(x^2 y^2).Napakoordinaateissa z = r e^(it) missä t on luvun z argumentti ja r sen moduli eli itseisarvo.
i = 0 1 i joten l i l = sqrt(0^2 1^2) = 1
i = e^(i (pii/2)) joten l i l = 1.Luvun i moduli on 1 ja argumentti pii/2.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Orpo hiiri kadoksissa, Marin jo kommentoi
Kuinka on valtiojohto hukassa, kun vihollinen Grönlantia valloittaa? Putinisti Purra myös hiljaa kuin kusi sukassa.826000Lopeta jo pelleily, tiedän kyllä mitä yrität mies
Et tule siinä onnistumaan. Tiedät kyllä, että tämä on just sulle. Sä et tule multa samaan minkäänlaista responssia, kosk3215434Nuori lapualainen nainen tapettu Tampereella?
Työmatkalainen havahtui erikoiseen näkyyn hotellin käytävällä Tampereella – tämä kaikki epäillystä hotellisurmasta tie494732Tampereen "empatiatalu" - "Harvoin näkee mitään näin kajahtanutta"
sanoo kokoomuslainen. Tampereen kaupunginvaltuuston maanantain kokouksessa käsiteltävä Tampereen uusi hyvinvointisuunni3133675Ukraina, unohtui korona - Grönlanti, unohtu Ukraina
Vinot silmät, unohtui Suomen valtiontalouden turmeleminen.12237Lidl teki sen mistä puhuin jo vuosikymmen sitten
Eli asiakkaat saavat nyt "skannata" ostoksensa keräilyvaiheessa omalla älypuhelimellaan, jolloin ei tarvitse mitään eril1362142Orpo pihalla kuin lumiukko
Onneksi pääministerimme ei ole ulkopolitiikassa päättäjiemme kärki. Hänellä on täysin lapsellisia luuloja Trumpin ja USA1011254- 7943
- 157856
- 55727