Spin-ominaisuudesta

Anonyymi

Mistä voidaan tietää millainen vielä löytämättömien hiukkasten spin-ominaisuuden täytyy olla? Vuorovaikuttavatko alkeishiukkaset eri tavoin riippuen niiden spinistä? Jos spin on 2 niin liittyykö se siihen jostain kuulemaani ilmiöön että joitain hiukkasia täytyy pyörittää ympäri kaksi kertaa että päädytään lähtötilanteeseen, eikä kerran kuten klassisilla kappaleilla?

2

127

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Haluatko tietää uusien hiukkasten sijaan enemmän vanhoista hiukkasten määritelmistä, jotka ovat olemassa lähes kaikissa malleissa? Ja liittyvätkö kaikki kysymykset kuitenkin spin-statistiikkaan, jossa on kokonaislukuspinit ja puolispinit?

      Maailmankaikkeudessa, joka on joko kolmiulotteinen tai relativistinen, voidaan tehdä koordinaatiston rotaatioita ryhmän SO(3) muunnosten kuten 3x3-matriisien avulla. Nämä kuvaavat saman pisteen ympärillä olevia havaitsijoita, joiden välillä on jokin kulma. Kvanttimekaniikan jälkeen tai lopuksi fysiikassa halutaan olla varmoja, että sen kvanttiobjektit ovat sellaisia, että jokaisessa rotaatiolla muunnetussa koordinaatistossa näiden objektien fyysiset ominaisuudet ovat samat keskenään. Kun todellisuus on probabilistista, tämä tarkoittaa, että todennäköisyyksien on pysyttävä samoina, jos eri puolilta pistettä suoritetaan esim. täydellinen mittaus samalle suureelle. Jos siis puhutaan fyysisestä todellisuudesta, ei mikään tilanne muutu, minkään arvoisella rotaatiolla. Suurin osa uusia hiukkasista sisältävistä malleista toimii edelleen tämän avaruuden kääntelyn ehdoilla.

      Näiden rotaatioiden ja kvanttitilojen ominaisuudet synnyttävät myös spinin, joka on uusi kvanttiluku, joka saa vain tiettyjä arvoja, ja jonka arvo perustuu suuntiin, missä sitä mitataan. Erikoista on niille se, että jos x:ssä olevan kvanttiobjektin spinin komponentin arvo mitataan pisteen A:n luona kohti A:ta eli vektorilla A-x, tämän tuloksen todennäköisyyksien ei pidä kuitenkaan olla samat kuin B:n luona käännetyssä koordinaatistossa, jos mitattaisiin spin suunnassa B-x. Taas kohti B:tä itseään. Sen sijaan todennäköisyyksien ja asentojen pitää noudattaa todellisuutta, missä B:n luona tehty mittaus suunnassa A-x on todennäköisyyksien suurudelta sama kuin A-x -spin kaikissa koordinaatistoissa, missä muut koordinaatistot joutuvat kirjoittamaan tämän A-x -vektorin tietysti uudestan siten kuin se niissä esiintyy.

      Sanoit myös, että hiukkasia pyöritetään, mutta tämä ei pidä paikkaansa, koska kvanttiobjekteilla, jotka ovat yksittäisiä alkeishiukkasia, ei ole asentoa. Niiden spin-suureiden muodostamat vektorit tai yleensä vain se suunta missä yhden spin-skalaariarvon arvo on maksimissa voivat muuttaa ns. suuntaansa, mutta tämän aikaansaanti olisi äskeiseen verrattuna objektin manipuloimista vuorovaikutuksilla eikä sen nykyisen tilan pelkkää kirjoittamista muista kulmista.

      Spin ½ objektien eli fermionien tapauksessa esiintyy niille kaikille (eli spin 1/2 n -objekteille) ilmiö johtuen kvanttiluvuista ja kääntöoperaattoreista, että jos koordinaatistoa käännetään 2 pi:n verran, niiden aaltofunktio eli tila s muuttuu tilaksi -s. Täysien ympyrien käännökset ovat matemaattisesti ja myös fysikaalisesti yleensä sama kuin ei tehtäisi mitään vaan operoitaisiin kaikkeen identiteettimatriisilla. Bosonit (eli 0 ,1 2 .. n -objektit) ovat tiloja joille s muuttuisi 2pi-rotaatiossa s:ksi. Fermionien rotaatiot olivat tätä ennen kuitenkin määritelty toisenlaisiksi, jotta juuri tähän päädyttäisiin (ks. SO(3) -ryhmän ja SU(2):n esitykset ja vastaavuudet). Tätä siis monet tarkoittavat sillä, että kaksi perättäistä 2pi-rotaatiota samaan suuntaan palauttaisi s:n takaisin saman merkkiseksi. Tällä s:n merkillä ei ole kuitenkaan mitään fysikaalista vaikutusta, koska todennäköisyydet eivät perustu s:ään vaan sen itseisarvon neliöön |s| ^2. Jos mitattaisiin esim. spin-suure, joka on operaattori M, tilalle, joka on alussa pystyvektori (s1 , 0) ^T, kääntämisen jälkeen M:n odotusarvo olisi matriisielementissä:
      ( -s1, 0 ) . M . ( -s1 , 0 ) ^T = (-1*-1) * ( s1 , 0 ) . M . (s1 , 0 ) ^T

      Fermioneille seuraa tästä ominaisuudesta vaikeiden todistusten jälkeen myös niiden havaittu fermi-dirac -statistiikka, missä useiden fermionien täytyy pysyä eri tiloissa kvanttilukujensa suhteen.

      Kvanttimekaniikka ei ole kovin hyvä tuottamaan mitään todellisuuteen liittyvää vastausta, jos siinä pitää olla vuorovaikutuksia kahden kvanttiobjektin välillä. Silti jos riittää, että yhteen objektiin vuorovaikutetaan ulkoapäin, niin spinien arvot vaikuttavat kaikissa Zeemanin ja Starkin ja muiden efekteissä, missä spin voi vaikuttaa saman objektin ns. kiertoradan kanssa siihen, miten suuria fotoneja sen on mahdollista vaihtaa ympäristössään. Kahden spin hiukkasen välistä vuorovaikutusta tapahtuu ensin niiden spinien välillä, missä toinen vaikuttaa toisen arvoon, ja vasta siitä kautta muuhun kokonaisuuteen, missä kuitenkin pitäisi tapahtua laajempi joukko vuorovaikutuksia ja tapahtumia ennen kuin esim. yhden objektin paikkasuure muuttuisi. Spinin sisältämiä vuorovaikutuksia näkyy systeemille kirjoitetussa Hamiltonin operaattorissa H.

      (jatkuu vielä: "Usein halutaan kysyä...")

      • Anonyymi

        Usein halutaan kysyä fermionien statistiikkaan liittyen, että onko siinä kyseessä vuorovaikutus, kun fermionin olemassaolo estää toisen fermionin saamia tiloja. Kun kenttäteoriassa on kirjoitettu fermionikentille vuorovaikutusten operaattori H ja se on esim. muodossa, jossa fermionien aaltofunktioita luodaan ja annihiloidaan, sitä on kuitenkin jo edeltänyt näiden fermionitilojen täydellinen määritelmä (kaikki tilat ja operaattorit on määriteltävä käytännössä yhtäaikaisesti), jolloin H:lla ei esim. koskaan voitaisi luoda evoluutiota, joka muodostaisi tiloja, missä kaksi fermionia olisi samassa tilassa. Tällöin mitkään uusien vuorovaikutusten tai vuorovaikuttamattomien fermionien eri muotoiset H:t eivät niitä synnytä eri tavalla. Käsittely ei siis minusta voi vastata sellaisiin kysymyksiin.

        Kenttäteoriassa yksinkertaiset säännöt hiukkastapahtumille perustuvat myös spiniin, koska spin-kvanttiluku voi olla osa säilyvää suuretta, joka etenee alkutiloista lopputiloihin tai valikoi sallitut lopputilat.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis

      Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu
      Maailman menoa
      403
      3362
    2. Tässä totuus jälleensyntymisestä - voit yllättyä

      Jumalasta syntyminen Raamatussa ei tässä Joh. 3:3. ole alkukielen mukaan ollenkaan sanaa uudestisyntyminen, vaan pelkä
      Jälleensyntyminen
      315
      1561
    3. Mitään järkeä?

      Että ollaan erillään? Kummankin pää on kovilla.
      Ikävä
      110
      1357
    4. En kadu sitä, että kohtasin hänet

      mutta kadun sitä, että aloin kirjoittamaan tänne palstalle. Jollain tasolla se saa vain asiat enemmän solmuun ja tekee n
      Ikävä
      84
      1353
    5. Noniin rakas

      Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi
      Ikävä
      99
      1328
    6. Oisko mitenkään mahdollisesti ihan pikkuisen ikävä..

      ...edes ihan pikkuisen pikkuisen ikävä sulla mua??.. Että miettisit vaikka vähän missähän se nyt on ja oiskohan hauska n
      Ikävä
      59
      1276
    7. Lapuan sanomissa käy rytinä

      Pistivät sitten päätoimittajan pihalle
      Lapua
      48
      1189
    8. Helena Koivu : Ja kohta mennään taas

      Kohta kohtalon päivä lähestyy kuinka käy Helena Koivulle ? Kenen puolella olet? Jos vastauksesi on Helenan niin voisi
      Kotimaiset julkkisjuorut
      81
      1095
    9. Au pair -työ Thaimaassa herättää kiivasta keskustelua somessa: "4cm torakoita, huumeita, tauteja..."

      Au pairit -sarjan uusi kausi herättää keskustelua Suomi24 Keskustelupalvelussa. Mielipiteitä ladataan puolesta ja vastaa
      Tv-sarjat
      26
      990
    10. Oot ihana

      Toivottavasti nähdään sattumalta jonain kesäpäivänä♥️🥺🫂
      Ikävä
      34
      883
    Aihe