Potenssiin korotus

Anonyymi

Paljonkohan on r-säteinen pallo potenssiin r-säteinen pallo?

11

332

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Se riippuu siitä miten määrittelet matemaattisen operaattorin potenssiin korotus tapahtuvan kun operandit eivät ole lukuja vaan suljettuja 3-ulotteisia tilavuuksia.

      • Anonyymi

        Voiko sen sitten määritellä jotenkin järkevästi?


      • Anonyymi
        Anonyymi kirjoitti:

        Voiko sen sitten määritellä jotenkin järkevästi?

        Ja miten potenssissa voi olla kompleksilukujakin? Esim. e potenssiin i kertaa pii on miinus yksi.


      • Anonyymi
        Anonyymi kirjoitti:

        Voiko sen sitten määritellä jotenkin järkevästi?

        Tutki asiaa ja esitä tulos sitten matematiikan väitöskirjassasi, jos asialla on riittävää uutuusarvoa väitöskirjaan asti. Epäilen tosin, että tässä on kyse vain jonkun olemassaolevan mutkikkaamman matemaattisen konstruktion erikoistapauksesta.


    • Anonyymi

      Se on varttia yli liivintaskun.

    • Anonyymi

      Pallon muodostaa myös sen pinta. Tämän voi esittää skalaarifunktiona r, joka on pisteen etäisyys pallon keskipisteestä, tai vaihtoehtoisesti vektoreina V, jotka kulkevat origosta pallonpinnan pisteisiin. Mieti ensin ympyrän tapausta 2D:ssä.

      Skalaari olisi yhden muuttujan funktio
      r = f(t)
      Missä t:n on oltava pisteen koordinaatti. Ympyrän/pallon muodostaa tässä sekä vasen, että oikea puoli yhdistettynä = -merkillä. Silti voitaisiin kirjoittaa mille tahansa kahdelle skalaarifunktiolle
      f (t) ^ g (t) = h (t)
      ja sanoa, että r ^ r -potenssilla on määritelty oikea puoli, joka lisäksi kuuluu joukkoon, joka antaisi saman luokan käyrän parametrisoinnin. Vielä on kuitenkin muutettava käyrän merkitystä vasemmalla puolella. Yritän myös kirjoittaa asiasta siten, että r ^ r :ssä jälkimmäinen r muistuttaisi jotenkin käyrää eikä tarkoituksetonta lukua. Jos V on vektori, uutta käyrää piirrettäisiin pisteinä joiden ehtona on
      ||V|| ^ ||V|| = h (t)
      Ainakin skalaarin r valitseminen käyrän määritelmäksi on valintana vähintään yhtä mielivaltainen kuin tämä valinta.

      Äskeisen yhtälön muodostama kuva esim. 2D:ssä on sama ympyrä kuin alkuperäinen, ja sille on vain tehty potenssimuotoinen yhtälöesitys. Jos ympyränä pitää vain oikean puolen funktioita, saadaan muita käyriä, mutta katso seuraavaa kohtaa.

      Vektoreiden muodostaman käyrän parametrisointi 2D-tapauksessa on kantavektoreiden avulla kirjoitettuna
      V = f (t) * i g (t) * j
      Nyt t voi olla parametri, joka ei välttämättä muodosta r:n kanssa koordinaatistoa. Jotta V:llä on potenssiin korotuksia itseensä, tässä tapauksessa pitää määritellä potenssioperaatio vektorien välille. Niiden tulos voi olla jonkin muun avaruuden alkio, kuten luku tai matriisi tai eri dimensioinen vektori. Saatu yhtälö voi tällöin vielä kuvata käyrää eri ulottuvuuksissa tai sitten käyrä on konseptuaalisempi joukko alkioita.

      Vastaus olisi siis jotain, mikä on potenssiinkorotuksen kautta "saman muotoinen" kuva alkuperäisestä käyrästä.

      Pallon tapaus on äskeisissä joko pakko tai helpompi parametrisoida kahdella koordinaatilla t1, t2.

      • Anonyymi

        Taitaa olla peräisin Niuanniemen pseudomatematiikan iltakurssilta tuon kommentin "viisaudet".


      • Anonyymi
        Anonyymi kirjoitti:

        Taitaa olla peräisin Niuanniemen pseudomatematiikan iltakurssilta tuon kommentin "viisaudet".

        Kirjoitan alla olleesta joukosta A B = {a b | a€A, b€B} samalla tavalla, kun joukot ovat käyriä 2D:ssä. Olisi olemassa kaksi vektorien Q=(x , y) kuuluu A:han.... ||Q|| = q yhtälöä, jotka ovat ympyröille. Ottaisin yhtälöt ja laskisin ne yhteen kuten yhtälönratkaisun aritmetiikassa. Mitä tässä joukossa kuitenkin tapahtuu on, että samaa asiaa tarkoittavaa parametria käyteään kahdesti kahdella eri nimellä.

        Q (t1 ) = q cos t1 * i q sin t1 * j

        R (t2 ) = r cos t2 * i r sin t2 * j

        Vasemmalle muodostuva Q (t1) R (t2) on kahden vektorin summa vektoriavaruudessa, joka on ympyröillä edelleen sama (i ja j näyttävät sen jo). Tämä vektori voidaan kirjoittaa yhdenkin vektorifunktion avulla, tai voitaisiin muodostaa muuttujan vaihto, koska odotettaisiin, että kun pääästään joukkoon A B, se muodostuu alkioista, jotka ovat pareja (x,y), joita voidaan yhtälössä merkitä myös uudella funktiolla P. Nyt P on yhden parametrin asemasta P:= P (t1,t2).

        Saatu
        P (t1,t2) = (q cos t1 r cos t2 ) * i (q sin t1 r sin t2 ) * j

        muodostaa A B:n pisteet. Sitä varten pitää juuri huomioida määrittelyjoukot,joissa oikean puolen funktiot saavat arvoja. Annetussa tapauksessa P:n op:n koko määrittelyjoukko on karteesinen tulo yhden kulmakoordinaatin t muodostamasta reaalivälistä (kun 0 _ t _ 2pi) itsensä kanssa.

        Tapaus on siten mm. samanlainen kuin jos määriteltäisiinkin kolmessa ulottuvuudessa funktiota z := z (x,y), joka saa arvoja z = 0, ja näille pisteille muodostetaan alijoukkoja. Nämä olisivat myös parametrisoitavissa olevia pintoja.

        Tässä kuvio A B voi olla esim. kahden (muun) ympyrän kehien välinen pinta-ala, jos q ja r ovat hyvin eri kokoiset.


    • Anonyymi

      Euklidisen avaruuden joukkojen summa on määritelty: A B = {a b | a€A, b€B}, mutta tuloa saati potenssiin korotusta ei ole 3-ulotteisen avaruuden pisteille määritelty. Tasossa tämän voisi tehdä samaistamalla pisteet kompleksiluvuiksi ja käyttämällä vastaavaa määritelmää kuin summalle. Vaaditaan, että "kantapallo" ei sisällä origoa.

    • Anonyymi

      Onko aloittaja kokeillut viagraa?

    • Anonyymi

      Yksi vaihtoehto olisi tehdä laskutoimitukset koordinaattikohtaisesti.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Miten Eerolan silmäkuvat voivat levitä muutamassa tunnissa ympäri maailmaa?

      Seuraako koko maailma persujen ja erityisesti Eerolan somea reaaliajassa? Edes kansanedustajan itsemurha eduskuntatalos
      Maailman menoa
      381
      5390
    2. Miten löydän sinut

      Ja saan sanottua kaiken mitä haluan sinulle kertoa? Ja kuinka kuuntelisit minua sen hetken? Kuinka voin ilmaista sen mit
      Ikävä
      15
      1352
    3. Onko kaivatullasi ruuvit löysällä

      eli himmeä pääkoppa? 🪚
      Ikävä
      104
      911
    4. Miltä se tuntui

      Miltä se tuntui, kun ymmärsit minun ikävöineen sinua?
      Ikävä
      78
      831
    5. Onko kaivattusi

      seksuaalisesti vetovoimaisin ihminen jonka olet ikinä tavannut?
      Ikävä
      41
      803
    6. Haikeaa miten kaikki meni

      Ei ole rohkeutta enää nähdä. Koska pelkään, että haavat aukeaa. Ikävä on silti, vaikka en vastannut...tiedät mihin.
      Ikävä
      56
      787
    7. Minkä biisin omisit sun kaivatulle?

      Pieni perustelu olisi kiva. ❤️
      Ikävä
      50
      782
    8. Ne viimeiset kerrat

      Kun katsoit minua niin lämpimästi. En unohda sitä ❤️
      Ikävä
      56
      774
    9. Kuinka monesti olet itkenyt?

      Kuinka monesti olet itkenyt kuluneen viikon aikana toisen ihmisen takia? Itse itken joka kerta, kun joku sanoo jotain i
      Sinkut
      132
      763
    10. Asentajako putosi radiomastosta

      https://www.is.fi/tampereen-seutu/art-2000011707236.html Ihminen on kuollut pudottuaan radiomastosta Tampereen Teiskoss
      Tampere
      43
      759
    Aihe