Potenssiin korotus

Anonyymi

Paljonkohan on r-säteinen pallo potenssiin r-säteinen pallo?

11

211

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Se riippuu siitä miten määrittelet matemaattisen operaattorin potenssiin korotus tapahtuvan kun operandit eivät ole lukuja vaan suljettuja 3-ulotteisia tilavuuksia.

      • Anonyymi

        Voiko sen sitten määritellä jotenkin järkevästi?


      • Anonyymi
        Anonyymi kirjoitti:

        Voiko sen sitten määritellä jotenkin järkevästi?

        Ja miten potenssissa voi olla kompleksilukujakin? Esim. e potenssiin i kertaa pii on miinus yksi.


      • Anonyymi
        Anonyymi kirjoitti:

        Voiko sen sitten määritellä jotenkin järkevästi?

        Tutki asiaa ja esitä tulos sitten matematiikan väitöskirjassasi, jos asialla on riittävää uutuusarvoa väitöskirjaan asti. Epäilen tosin, että tässä on kyse vain jonkun olemassaolevan mutkikkaamman matemaattisen konstruktion erikoistapauksesta.


    • Anonyymi

      Se on varttia yli liivintaskun.

    • Anonyymi

      Pallon muodostaa myös sen pinta. Tämän voi esittää skalaarifunktiona r, joka on pisteen etäisyys pallon keskipisteestä, tai vaihtoehtoisesti vektoreina V, jotka kulkevat origosta pallonpinnan pisteisiin. Mieti ensin ympyrän tapausta 2D:ssä.

      Skalaari olisi yhden muuttujan funktio
      r = f(t)
      Missä t:n on oltava pisteen koordinaatti. Ympyrän/pallon muodostaa tässä sekä vasen, että oikea puoli yhdistettynä = -merkillä. Silti voitaisiin kirjoittaa mille tahansa kahdelle skalaarifunktiolle
      f (t) ^ g (t) = h (t)
      ja sanoa, että r ^ r -potenssilla on määritelty oikea puoli, joka lisäksi kuuluu joukkoon, joka antaisi saman luokan käyrän parametrisoinnin. Vielä on kuitenkin muutettava käyrän merkitystä vasemmalla puolella. Yritän myös kirjoittaa asiasta siten, että r ^ r :ssä jälkimmäinen r muistuttaisi jotenkin käyrää eikä tarkoituksetonta lukua. Jos V on vektori, uutta käyrää piirrettäisiin pisteinä joiden ehtona on
      ||V|| ^ ||V|| = h (t)
      Ainakin skalaarin r valitseminen käyrän määritelmäksi on valintana vähintään yhtä mielivaltainen kuin tämä valinta.

      Äskeisen yhtälön muodostama kuva esim. 2D:ssä on sama ympyrä kuin alkuperäinen, ja sille on vain tehty potenssimuotoinen yhtälöesitys. Jos ympyränä pitää vain oikean puolen funktioita, saadaan muita käyriä, mutta katso seuraavaa kohtaa.

      Vektoreiden muodostaman käyrän parametrisointi 2D-tapauksessa on kantavektoreiden avulla kirjoitettuna
      V = f (t) * i g (t) * j
      Nyt t voi olla parametri, joka ei välttämättä muodosta r:n kanssa koordinaatistoa. Jotta V:llä on potenssiin korotuksia itseensä, tässä tapauksessa pitää määritellä potenssioperaatio vektorien välille. Niiden tulos voi olla jonkin muun avaruuden alkio, kuten luku tai matriisi tai eri dimensioinen vektori. Saatu yhtälö voi tällöin vielä kuvata käyrää eri ulottuvuuksissa tai sitten käyrä on konseptuaalisempi joukko alkioita.

      Vastaus olisi siis jotain, mikä on potenssiinkorotuksen kautta "saman muotoinen" kuva alkuperäisestä käyrästä.

      Pallon tapaus on äskeisissä joko pakko tai helpompi parametrisoida kahdella koordinaatilla t1, t2.

      • Anonyymi

        Taitaa olla peräisin Niuanniemen pseudomatematiikan iltakurssilta tuon kommentin "viisaudet".


      • Anonyymi
        Anonyymi kirjoitti:

        Taitaa olla peräisin Niuanniemen pseudomatematiikan iltakurssilta tuon kommentin "viisaudet".

        Kirjoitan alla olleesta joukosta A B = {a b | a€A, b€B} samalla tavalla, kun joukot ovat käyriä 2D:ssä. Olisi olemassa kaksi vektorien Q=(x , y) kuuluu A:han.... ||Q|| = q yhtälöä, jotka ovat ympyröille. Ottaisin yhtälöt ja laskisin ne yhteen kuten yhtälönratkaisun aritmetiikassa. Mitä tässä joukossa kuitenkin tapahtuu on, että samaa asiaa tarkoittavaa parametria käyteään kahdesti kahdella eri nimellä.

        Q (t1 ) = q cos t1 * i q sin t1 * j

        R (t2 ) = r cos t2 * i r sin t2 * j

        Vasemmalle muodostuva Q (t1) R (t2) on kahden vektorin summa vektoriavaruudessa, joka on ympyröillä edelleen sama (i ja j näyttävät sen jo). Tämä vektori voidaan kirjoittaa yhdenkin vektorifunktion avulla, tai voitaisiin muodostaa muuttujan vaihto, koska odotettaisiin, että kun pääästään joukkoon A B, se muodostuu alkioista, jotka ovat pareja (x,y), joita voidaan yhtälössä merkitä myös uudella funktiolla P. Nyt P on yhden parametrin asemasta P:= P (t1,t2).

        Saatu
        P (t1,t2) = (q cos t1 r cos t2 ) * i (q sin t1 r sin t2 ) * j

        muodostaa A B:n pisteet. Sitä varten pitää juuri huomioida määrittelyjoukot,joissa oikean puolen funktiot saavat arvoja. Annetussa tapauksessa P:n op:n koko määrittelyjoukko on karteesinen tulo yhden kulmakoordinaatin t muodostamasta reaalivälistä (kun 0 _ t _ 2pi) itsensä kanssa.

        Tapaus on siten mm. samanlainen kuin jos määriteltäisiinkin kolmessa ulottuvuudessa funktiota z := z (x,y), joka saa arvoja z = 0, ja näille pisteille muodostetaan alijoukkoja. Nämä olisivat myös parametrisoitavissa olevia pintoja.

        Tässä kuvio A B voi olla esim. kahden (muun) ympyrän kehien välinen pinta-ala, jos q ja r ovat hyvin eri kokoiset.


    • Anonyymi

      Euklidisen avaruuden joukkojen summa on määritelty: A B = {a b | a€A, b€B}, mutta tuloa saati potenssiin korotusta ei ole 3-ulotteisen avaruuden pisteille määritelty. Tasossa tämän voisi tehdä samaistamalla pisteet kompleksiluvuiksi ja käyttämällä vastaavaa määritelmää kuin summalle. Vaaditaan, että "kantapallo" ei sisällä origoa.

    • Anonyymi

      Onko aloittaja kokeillut viagraa?

    • Anonyymi

      Yksi vaihtoehto olisi tehdä laskutoimitukset koordinaattikohtaisesti.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Aivosyöpää sairastava Olga Temonen TV:ssä - Viimeinen Perjantai-keskusteluohjelma ulos

      Näyttelijä-yrittäjä Olga Temonen sairastaa neljännen asteen glioomaa eli aivosyöpää, jota ei ole mahdollista leikata. Hä
      Maailman menoa
      80
      2809
    2. Pelotelkaa niin paljon kuin sielu sietää.

      Mutta ei mene perille asti. Miksi Venäjä hyökkäisi Suomeen? No, tottahan se tietenkin on jos Suomi joka ei ole edes soda
      Maailman menoa
      295
      1626
    3. Mikä saa ihmisen tekemään tällaista?

      Onko se huomatuksi tulemisen tarve tosiaan niin iso tarve, että nuoruuttaan ja tietämättömyyttään pilataan loppuelämä?
      Sinkut
      246
      1527
    4. Minkä merkkisellä

      Autolla kaivattusi ajaa? Mies jota kaipaan ajaa Mersulla.
      Ikävä
      87
      1371
    5. IL - VARUSMIEHIÄ lähetetään jatkossa NATO-tehtäviin ulkomaille!

      Suomen puolustuksen uudet linjaukset: Varusmiehiä suunnitellaan Nato-tehtäviin Puolustusministeri Antti Häkkänen esittel
      Maailman menoa
      401
      1349
    6. Nyt kun Pride on ohi 3.0

      Edelliset kaksi ketjua tuli täyteen. Pidetään siis edelleen tämä asia esillä. Raamattu opettaa johdonmukaisesti, että
      Luterilaisuus
      396
      1273
    7. Esko Eerikäinen tatuoi kasvoihinsa rakkaan nimen - Kärkäs kommentti "Ritvasta" lävähti somessa

      Ohhoh! Esko Eerikäinen on ottanut uuden tatuoinnin. Kyseessä ei ole mikä tahansa kuva minne tahansa, vaan Eerikäisen tat
      Suomalaiset julkkikset
      38
      1027
    8. Kiitos nainen

      Kuitenkin. Olet sitten ajanmerkkinä. Tuskin enää sinua näen ja huomasitko, että olit siinä viimeisen kerran samassa paik
      Tunteet
      2
      999
    9. Hyväksytkö sinä sen että päättäjämme ei rakenna rauhaa Venäjän kanssa?

      Vielä kun sota ehkäpä voitaisiin välttää rauhanponnisteluilla niin millä verukkeella voidaan sanoa että on hyvä asia kun
      Maailman menoa
      329
      854
    10. Miksi Purra-graffiti ei nyt olekkaan naisvihaa?

      "Pohtikaapa reaktiota, jos vastaava graffiti olisi tehty Sanna Marinista", kysyy Tere Sammallahti. Helsingin Suvilahden
      Maailman menoa
      254
      832
    Aihe