Kinkkinen epäyhtälö taas

Anonyymi-ap

f(x,y,z) = x/sqrt(y^2 + 15 xz) + y/sqrt(z^2 + 15 xy) + z/sqrt(x^2 + 15 zy) kun x>0, y>0, z>0.
Kirjoitustyötä helpottaakseni kirjoitan
d/dx f(a,b,c) = f( x; a.b,c) , d/dy f(ab,c) = f(y; a,b,c) , d/dz f(a,b,c) = f(z; a,b,c)
d^2/dx^2 f(a,b,c) = f(xx; a,bc) ja samoin f(xy; a,b,c) ....f(zz; ab,c). Jos pisteellä (a,b,c) ei ole väliä lyhennän nämä muotoon f(x; )...f(xx; )...f(zz; )

On todistettava, että f(x,y,z) >= 3/4.

Funktiolla f on symmetria
(1) f(a,b,c) = f(b,c,a) = f(c,a,b)

f on homogeeninen astetta 0 eli f(ta,tb,tc) = f(a,b,c).
Tällöin 1. osittaisderivaatat ovat homogeenifunktioita astetta - 1 ja toiset osittaisderivaatat derivaatat astetta - 2.

Osittaisderivaatan määritelmästä ja symmetriasta (1) seuraa, että
(2) f(x;a,b,c) = f(z; b,c,a) = f(y; c,a,b)
Eulerin homogeenifunktioita koskeva lause sanoo että jos funktio on homogeeninen astetta n niin sen derivaatta on homogeeninen astetta n-1.Lisäksi

(3) a f(x; a,b,c) ) + b f(y; a,b,c) + c f(z; a,b,c) = n f(a,b,c)
Tästä ja yhtälöistä (2) seuraa,että fx; (a,a,a) = fy; (a,a,a) = f(z; a,a,a) = 0
Erityisesti tämä pätee kun a = 1. Lisäksi f(a,a,a) = 3/4.
Itse asiassa(3) sanoo, että f:n derivaatta suuntaan (a,a,a) = 0 eli f on vakio tuolla puolisuoralla .
(1,1,1) on siis funktion f kriittinen piste.
Yhtälöistä (2) ja toisen osittaisderivaatan määritelmästä seuraa, että
f(xx;a,b,c) = f(zz; b,c,a)) = f(yy; c,a,b)
f(xy; a,b,c) = f(zx; b,c,a) = f(y,z; c,a,b)
f(xz;a,b,c) = f(zy; b,c,a) = f(yx; c,a,b)
Pisteessä (1,1,1) on siis
f(xx; ) = f(yy; ) = f(zz; ) ja f(xy; ) = f(zx; ) = f(yz; ) = f(xz; ) = f(zy; ) = f(yx; = f(xz; ) = f(zy; ) = f(yx; ). Tässä on käytetty myös toisen osittaisderivaatan symmetrisyyttä.

Jatkuu

13

1323

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Jatkuu.
      Käytetään Eulerin lausetta näihinntoisiin derivaattoihin pisreessä (1,1,1) (joka oli kriittinen piste).
      f(xx,; 1,1,1) + f(xy; 1,1,1) + f(xz; 1,1 1) = 0
      f(yx; 1,1,1) + f(yy; 1,1,1) + f(yz; 1,1,1) =0
      f(zx; 1,1,1) + f(zy; 1,1,1) + f(zz; 1,1,1) = 0
      Näistä ja edeltävistä toisen derivaatan symmetrioista seuraa, että pisteessä (1,1,1) on f(xx; ) = f(yy; ) = f(zz; ) = - 2 f(xy; )

      Riittää siis laskea pelkästään derivaatan f(xx; 1,1,1) arvo.Tämä saadaan helpoimmin derivoimalla kahdesti x:n funktio f(x,1,1) ja tulos on 338/4^6.

      Kriittistä pistettä tutkitaan neliömuodon Q(x,y,z ; h1,h2,h3) avulla.
      f(1+ h1, 1+ h2, 1+ h3) = 3/4 + 0 + 1/2! * 338/4^6 (h1^2 + h2^2 + h3^2 - h1 h2 - h1 h3 - h3 h1)+ jäännöstermi.
      Siis Q(1,1,1; h1,h2,h3) >= 0 ja 0 sjvs kun h1=h2=h3 on piste (1,1,1) lokaali minimi.

      Kun muistetaan, että nuo toiset derivaatat ovat homogeenisia astetta - 2 nähdään, että sama pätee koko puolisuoralla (a,a,a) missä a> 0.
      3/4 on siis f:n lokaalinen minimiarvo. Sen globaalisuutta entässä nyt todistanut.

      • Vielä pikku kommentti. Jos g(x,y,z) = sqrt(y^2 + 15 xz) / x + sqrt(z^2 + 15 xy)/y + sqrt(x^2 + 15zy)/z
        niin pystyn ihan epäyhtälöillä todistamaan, että
        g(x,y,z) >= 12
        f*g >= 9
        f + g >= 12 3/4.
        Nämä toteutuvat, jos f >= 3/4.
        Mutta "hauskaa" kyllä, näistä ei seuraa, että f >= 3/4.


    • Anonyymi

      Excellent.

    • Anonyymi

      Numeerisesti näyttäisi olevan voimassa:

      import numpy as np
      from scipy.optimize import minimize

      # Määritellään funktio
      def f(x):
      return x[0] / np.sqrt(x[1]**2 + 15 * x[0] * x[2]) + \
      x[1] / np.sqrt(x[2]**2 + 15 * x[0] * x[1]) + \
      x[2] / np.sqrt(x[0]**2 + 15 * x[1] * x[2])

      # Alkuarvaus
      x0 = np.array([1.0, 1.0, 1.0])

      # Rajoitukset (x > 0, y > 0, z > 0)
      bounds = [(1e-5, None), (1e-5, None), (1e-5, None)]

      # Minimointi
      result = minimize(f, x0, method='L-BFGS-B', bounds=bounds)

      print("Minimiarvo:", result.fun)
      print("Minimipiste:", result.x)

      Tulostus:

      Minimiarvo: 0.75
      Minimipiste: [1. 1. 1.]

      • Anonyymi

        Hyvähän tätä on tutkia näinkin. Jos olisi tullut sellainen tulos, että 3/4 ei olekaan globaali minimi niin eipä kannattaisi miettiä todistusta sille, että se tosiaan on.
        Vielä on siis toivoa!


      • Anonyymi

        Tässä lähestymistavassa on ongelmana se, että minimipisteet eivät ole erillisiä vaan kaikki muotoa (a,a,a) olevat pisteet, joita on äärettömän monta. Tämä tekee globaalin minimin etsimisen algoritmisesti erittäin vaikeaksi. Kenties löytyy joku muunnos, joka muuntaa epäyhtälön sellaiseksi, että riittää todistaa epäyhtälön olevan voimassa äärettömän monella pistekolmikolla (a,b,c).


    • Anonyymi

      Joskus tuollaisia epäyhtälöitä voi lähteä ratkomaan Hölderin tai Jensenin epäyhtälön avulla. Joskus taas tuollaiseen voi kehittää numeerisen algoritmin, joka voidaan muuntaa täsmällisesti todistukseksi.

      • Anonyymi

        Ja joskus voi hölöttää turhanpäiväisyyksiä!


    • Anonyymi

      Kirjoittamalla

      a = x/y
      b = y/z
      c = z/x

      saadaan lauseke muotoon

      a/sqrt(1+15a/b) + b/sqrt(1+15b/c) + c/sqrt(1+15c/a).

      Ja koska abc = 1, niin ongelma saadaan pudotettua kaksiulotteiseksi. Tutkitaan siis funktiota

      g(a,b) = a/sqrt(1+15a/b) + b/sqrt(1+15ab^2) + 1/sqrt(a^2b^2+15b),
      a,b>0

      Kun a tai b menee nollaan, niin mennään toisen muuttujan suhteen funktioon t ↦ t + 1/sqrt(15t), joka on suurempaa kuin 3/4 (minimi noin 0,76631).
      Ja kun a tai b menee äärettömään, niin g menee äärettömään.

      Ja kriittisten pisteiden tarkastelu olikin jo tehty. No, tämän reunatarkastelun olisi varmaan voinut tehdä alkuperäiselle f:llekin.

      Ps. tuosta a,b,c -lausekkeesta näyttäisi niinkuin Jensenin pitäisi toimia, mutta sinne tulee ärsyttävästi (a+b+c)^3/2, joka tekee arviosta liian heikon.

      • Anonyymi

        abc = 1 ei ole tuon funktion määritysalue.
        0-homogeemisuudesta seuraa sen sijaan, että funktio saa kaikki arvonsa jo alueessa
        a+b+c =1. sillä
        f(a/(a+b+c) , b/(a+b+c), c/(a+b+c)) = f(a,b,c)


    • Anonyymi

      Voiko tuo todistaa ChatGPT:llä ja Sagemathilla? Kokeilin näin:

      # Määritellään muuttujat
      x, y, z = var('x y z')

      # Funktio f(x, y, z)
      f = x/sqrt(y^2 + 15*x*z) + y/sqrt(z^2 + 15*x*y) + z/sqrt(x^2 + 15*y*z)

      # Lasketaan ensimmäisen kertaluvun osittaisderivaatat
      f_x = diff(f, x)
      f_y = diff(f, y)
      f_z = diff(f, z)

      # Lasketaan toisen kertaluvun osittaisderivaatat
      f_xx = diff(f, x, x)
      f_yy = diff(f, y, y)
      f_zz = diff(f, z, z)
      f_xy = diff(f, x, y)
      f_xz = diff(f, x, z)
      f_yz = diff(f, y, z)

      # Muodostetaan Hessian-matriisi
      Hessian = Matrix([[f_xx, f_xy, f_xz],
      [f_xy, f_yy, f_yz],
      [f_xz, f_yz, f_zz]])

      # Lasketaan Hessianin determinantti
      det_Hessian = Hessian.det()
      det_Hessian

      # Lasketaan gradientti
      grad_f = [diff(f, var) for var in [x, y, z]]

      # Tarkastellaan gradienttia pisteessä x = y = z = 1
      grad_at_1 = [g.subs({x: 1, y: 1, z: 1}) for g in grad_f]
      print(grad_at_1)

      f_xx_at_1 = f_xx.subs({x: 1, y: 1, z: 1})
      print(f_xx_at_1)
      Hessian = Matrix([[f_xx, f_xy, f_xz],
      [f_xy, f_yy, f_yz],
      [f_xz, f_yz, f_zz]])
      Hessian_at_1 = Hessian.subs({x: 1, y: 1, z: 1})
      # Laske determinantti ja tallenna se muuttujaan
      det_Hessian_at_1 = Hessian_at_1.det()

      # Tulosta determinantti
      print(det_Hessian_at_1)

      # Laske ominaisarvot ja tallenna ne muuttujaan
      eigenvalues_at_1 = Hessian_at_1.eigenvalues()

      # Tulosta ominaisarvot
      print(eigenvalues_at_1)

      Tuloste oli:

      /usr/lib/python3/dist-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.4
      warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
      Solution:
      x = [1.00000000e+00 4.55921939e-04 5.87326810e-06 9.99997912e-01]
      Objective value = 1.0000002078791197
      Constraint 1 (x1^2 + x2^2 - 1) = 2.0784026544262701e-07
      Constraint 2 (x1^2 + x3^2 - 1) = 9.946488077616777e-12
      [0, 0, 0]
      169/2048
      0
      [507/4096, 507/4096, 0]

      ChatGPT vastasi (osa matikan sympoleista kopioituu tuplana, sori):
      Tuloksesi näyttää olevan oikein:

      Gradientti on nolla [0,0,0][0,0,0], mikä vahvistaa, että piste (x=y=z=1)(x=y=z=1) on kriittinen piste (kriittinen piste löytyy, kun kaikki gradientin komponentit ovat nollia).

      Determinantti on 169/2048​, joka on positiivinen. Tämä kertoo, että Hessianin determinantti on positiivinen, mikä yleensä viittaa siihen, että kyseessä on minimi.

      Ominaisarvot ovat [507/4096,507/4096,0]. Tämä tarkoittaa, että Hessianin ominaisarvoista kaksi on positiivisia ja yksi on nolla. Nolla-arvo voi merkitä, että kyseessä ei ole "tiukka" minimi, vaan satulapiste, mutta koska determinantti on positiivinen ja kaksi ominaisarvoa ovat positiivisia, voidaan silti päätellä, että piste (x=y=z=1) on lokaali minimi.

      Päätelmä:

      Koska gradientti on nolla ja Hessianin determinantti on positiivinen (ja useat ominaisarvot ovat positiivisia), voimme päätellä, että piste x=y=z=1 on minimi. Tämä vahvistaa, että funktion f(x,y,z) vähintään 3/4​ pätee, ja että minimissä f(1,1,1)=3/4​.

      Tämä siis tukee alkuperäistä epäyhtälöä!

      • Anonyymi

        Todistin jo ihan matemaattisesti tuon lokaalin minimin olemassaolon. Oikeastaan tietokoneohjelmilla tehty "todistus" ei sitä enää tue, pikemminkin tulos kertoo, että ohjelmisto toimii ,ainakin tässä tapauksessa, oikein.

        Mutta onhan tietenkin hauska kokeilla, mitä koneella saa aikaan.

        Tuo "Hessianin determinantti" on muuten Hessen determinantti.
        Katso myös kommenttini / 2024-09-07 16:33:11


    • Anonyymi

      Entä näin?

      \documentclass[a4paper,12pt]{article}
      \usepackage{amsmath,amssymb}

      \title{Todistus epäyhtälölle}
      \author{}
      \date{}

      \begin{document}

      \maketitle

      \section*{Todistus}

      Aloitamme oletuksella \(x = 1\), jolloin epäyhtälö yksinkertaistuu seuraavaan muotoon:

      \[
      f(y, z) = \frac{1}{\sqrt{y^2 + 15z}} + \frac{y}{\sqrt{z^2 + 15y}} + \frac{z}{\sqrt{1 + 15yz}}.
      \]

      Tavoitteenamme on osoittaa, että \(f(y, z) \geq \frac{3}{4}\) kaikilla \(y > 0\) ja \(z > 0\).

      \subsection*{Vaihe 1: Symmetria}

      Yksi luonnollinen ehdokas kriittiseksi pisteeksi on \(y = z = 1\), koska termit ovat symmetrisiä. Tarkastetaan, onko tämä kriittinen piste ja arvioidaan \(f(1, 1)\).

      Kun \(y = 1\) ja \(z = 1\), funktio yksinkertaistuu:

      \[
      f(1, 1) = \frac{1}{\sqrt{1^2 + 15 \cdot 1}} + \frac{1}{\sqrt{1^2 + 15 \cdot 1}} + \frac{1}{\sqrt{1 + 15 \cdot 1}}.
      \]

      Tämä on:

      \[
      f(1, 1) = \frac{1}{\sqrt{16}} + \frac{1}{\sqrt{16}} + \frac{1}{\sqrt{16}} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}.
      \]

      Näin ollen \(y = 1\) ja \(z = 1\) on kriittinen piste, ja tässä pisteessä \(f(1, 1) = \frac{3}{4}\), mikä tyydyttää epäyhtälön. Tämä viittaa siihen, että kyseessä on globaali minimi.

      \subsection*{Vaihe 2: Käyttäytyminen äärettömyydessä}

      Seuraavaksi tarkastellaan funktion \(f(y, z)\) käyttäytymistä, kun \(y \to \infty\) tai \(z \to \infty\).

      \paragraph{Tapaus 1: \(y \to \infty\), \(z\) kiinteä}
      Kun \(y \to \infty\), termi \( \frac{1}{\sqrt{y^2 + 15z}} \) käyttäytyy kuten \( \frac{1}{y} \), mikä lähestyy nollaa, kun \(y \to \infty\). Samoin termi \( \frac{y}{\sqrt{z^2 + 15y}} \) käyttäytyy kuten \( \frac{y}{\sqrt{15y}} = \frac{1}{\sqrt{15}} \), joka on vakio. Kolmas termi \( \frac{z}{\sqrt{1 + 15yz}} \) myös lähestyy nollaa, kun \(y \to \infty\).

      Näin ollen, kun \(y \to \infty\), funktio käyttäytyy asymptoottisesti seuraavasti:

      \[
      f(y, z) \approx \frac{1}{\sqrt{15}} + 0 + 0 = \frac{1}{\sqrt{15}}.
      \]

      Koska \( \frac{1}{\sqrt{15}} \approx 0.258 \), mikä on vähemmän kuin \(\frac{3}{4}\), minimi ei voi olla äärettömyydessä.

      \paragraph{Tapaus 2: \(z \to \infty\), \(y\) kiinteä}
      Kun \(z \to \infty\), termi \( \frac{1}{\sqrt{y^2 + 15z}} \) käyttäytyy kuten \( \frac{1}{\sqrt{15z}} \), mikä lähestyy nollaa. Samoin termi \( \frac{y}{\sqrt{z^2 + 15y}} \) käyttäytyy kuten \( \frac{y}{z} \), joka myös lähestyy nollaa. Kolmas termi \( \frac{z}{\sqrt{1 + 15yz}} \) käyttäytyy kuten \( \frac{1}{\sqrt{15y}} \).

      Näin ollen, kun \(z \to \infty\), funktio käyttäytyy asymptoottisesti seuraavasti:

      \[
      f(y, z) \approx 0 + 0 + \frac{1}{\sqrt{15y}}.
      \]

      Koska \( \frac{1}{\sqrt{15y}} \) on aina vähemmän kuin \(\frac{3}{4}\), minimi ei voi olla äärettömyydessä.

      \subsection*{Vaihe 3: Käyttäytyminen rajoilla}

      Tarkastellaan seuraavaksi funktion \(f(y, z)\) käyttäytymistä, kun \(y \to 0\) ja \(z \to 0\).

      \paragraph{Tapaus 1: \(y \to 0\), \(z\) kiinteä}
      Kun \(y \to 0\), termi \( \frac{1}{\sqrt{y^2 + 15z}} \) käyttäytyy kuten \( \frac{1}{\sqrt{15z}} \), joka pysyy rajallisena. Termi \( \frac{y}{\sqrt{z^2 + 15y}} \) lähestyy nollaa, ja termi \( \frac{z}{\sqrt{1 + 15yz}} \) käyttäytyy kuten \(z\), joka on myös rajallinen.

      Näin ollen, kun \(y \to 0\), funktio käyttäytyy seuraavasti:

      \[
      f(y, z) \approx \frac{1}{\sqrt{15z}} + z.
      \]

      Minimoidaan tämä \(z\):n suhteen derivoimalla:

      \[
      \frac{d}{dz} \left( \frac{1}{\sqrt{15z}} + z \right) = -\frac{1}{2} \cdot \frac{1}{z^{3/2} \sqrt{15}} + 1 = 0,
      \]

      josta saadaan \(z \approx 0.2554\). Kun tämä sijoitetaan takaisin, saadaan:

      \[
      f(y \to 0, z \approx 0.2554) \approx 0.766.
      \]

      Näin ollen \(f(y, z) > \frac{3}{4}\) tällä alueella.

      \paragraph{Tapaus 2: \(z \to 0\), \(y\) kiinteä}
      Kun \(z \to 0\), termi \( \frac{1}{\sqrt{y^2 + 15z}} \) käyttäytyy kuten \( \frac{1}{y} \), joka pysyy rajallisena. Termi \( \frac{y}{\sqrt{z^2 + 15y}} \) käyttäytyy kuten \( \frac{y}{\sqrt{15y}} = \frac{\sqrt{y}}{\sqrt{15}} \), ja kolmas termi \( \frac{z}{\sqrt{1 + 15yz}} \) lähestyy nollaa.

      Näin ollen, kun \(z \to 0\), funktio käyttäytyy seuraavasti:

      \[
      f(y, z) \approx \frac{1}{y} + \frac{\sqrt{y}}{\sqrt{15}}.
      \]

      Minimoidaan tämä \(y\):n suhteen derivoimalla:

      \[
      \frac{d}{dy} \left( \frac{1}{y} + \frac{\sqrt{y}}{\sqrt{15}} \right) = -\frac{1}{y^2} + \frac{1}{2\sqrt{15y}} = 0,
      \]

      josta saadaan \(y \approx 3.915\). Kun tämä sijoitetaan takaisin, saadaan:

      \[
      f(y \approx 3.915, z \to 0) \approx 0.766.
      \]

      Näin ollen \(f(y, z) > \frac{3}{4}\) myös tällä alueella.

      \subsection*{Vaihe 4: Johtopäätös}

      Vaiheista 2 ja 3 näemme, että:

      \begin{itemize}
      \item Funktio \(f(y, z)\) lähestyy arvoja, jotka ovat suurempia kuin \(\frac{3}{4}\), kun \(y\) tai \(z\) lähestyvät äärettömyyttä tai nollaa.
      \item Funktion \(f(y, z)\) minimi saavutetaan pisteessä \( (1, 1) \), jossa \(f(1, 1) = \frac{3}{4}\).
      \end{itemize}

      Näin ollen \(f(y, z) \geq \frac{3}{4}\) kaikilla \(y > 0\) ja \(z > 0\), ja epäyhtälö on todistettu.

      \end{document}

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Theermannilla kulkee!

      Vouti vie kaiken mikä mieheltä irti lähtee ja palstan naiset syyttävät tilanteesta kilpaa eri naisia. Miehellä on elämän
      Kotimaiset julkkisjuorut
      112
      7330
    2. Näin unta viime yönä

      Että tulit nainen istumaan syliini minihame päällä.
      Ikävä
      47
      5286
    3. Esivaihdevuodet, menopaussi

      https://www.pihlajalinna.fi/palvelut/yksityisasiakkaat/terveys/esivaihdevuodet-eli-premenopaussi Täällä kun puhutaan pa
      Sinkut
      57
      2979
    4. Tänään taas tuli pari-kolme juttua

      Jotka niin mielelläni jakaisin sun kanssa. Niin paljon elämää jaettavana ja niin selkeä paikka sinulle. Mutta ymmärrän
      Tunteet
      7
      2463
    5. Kuhmo tekisi perässä

      Lomauttakaa kaupungin talolta turhat lattiankuluttajat pois, kuten naapuripitäjä
      Kuhmo
      10
      1488
    6. Suomi julkaisi varautumisoppaan

      Että sellanen tappaus. Kun kriisitilanne iskee, niin on mentävä nettiin ja luettava ohjeet suomi.fi -sivuilta. Onkohan j
      Maailman menoa
      192
      1359
    7. Olen jälleen pahoillani

      Harjoittamastani henkisestä väkivallasta palstan välityksellä. Kyllä ne voi vaikuttaa jotenkin mieleen, vaikka ei itsell
      Ikävä
      92
      1083
    8. Ukraina sai luvan vastata ohjuksin Venäjän lueelle

      Mediatietojen mukaan Yhdysvallat on antanut Ukrainalle luvan iskeä pitkän kantaman ohjuksilla Venäjälle. Ylen kirjeenvai
      NATO
      311
      1020
    9. Miksi putin ei valinnut ensimmäiseksi kohteekseen Suomea?

      Olisiko ollut sittenkin helpompi kohde?
      Maailman menoa
      226
      963
    10. Oot vaan niin hellä

      Ja lämmin luonteeltasi, että rakastan sitä yli kaiken. Oot ehkä tietämättäsi auttanut mua todella paljon. Auttaisit tämä
      Ikävä
      30
      896
    Aihe