Integrointi ja pinta-alat

fuksi

Integrointi on yksinkertaistettuna derivaatan käänteistoimitus. Eli jos tunnettaan derivaatta f'(x), niin integroinnin avulla saadaan selville funktio f(x).

Integroinnin avulla voidaan laskea myös erilaisten käyrien rajoittamia pinta-aloja(ja myös tilavuuksia). Tätä ominaisuutta koskee varsinainen kysymyksenikin, eli miten voidaan osoittaa integroimisen ja pinta-alan määrittämisen välinen yhteys?

5

786

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • epäfuksi

      Lukaisepa kurssi Differentiaali- ja integraalilaskenta I. 2, http://www.math.helsinki.fi/kurssit/difint12/2001/
      Lauseessa 9.3 todistetaan yhteys pinta-alan ja integraalifunktion välille. Toisaalta 5.11 kertoo, miten määrättyjä integraaleja lasketaan. Nyt integraalifunktion määritelmä on se, että F on f:n integraalifunktio jos D F(x)=f(x) kaikilla x.

    • JustuS67
    • jukepuke

      Harmi, että varsinkin lukiossa sivuutetaan monesti tuo integraalin "oikea" tarkoitus. Riemannilainen integraali saadaan arvioimalla funktion käyrää porrasfunktiolla, jonka pinta-ala on helppo laskea. Nyt kun tämän porrasfunktion jakoa tihennetään, eli tehdään palkeista kapeampia, niin ne täyttävät pinta-alan paremmin ja saadaan parempi aproksimaatio kyseisesta alasta. Integraali saadaan antamalla näiden palkkien paksuuden mennä nollaan, eli raja-arvona.

      Lukiossa integraali monesti määritellään derivaatan käänteisoperaatioksi, mikä on itseasiassa aika kovan luokan tulos. Tämän vuoksi lukiolaisille jää hämärän peittoon, että miksi se pinta-ala tulee juuri derivaatan käänteisoperaationa, mitä ei ainakaan minun mielestä ihan otsallaan näe.

      Kannattaa etsiä netistä Riemann integraalista tietoa vaikka googlella. Toivottavasti valaisi jonkin verran tämä suht epäselvä ja lyhyt vastaus :).

    • Kysymyksessä on analyysin peruslauseen lemma.

      A(x) = a∫x f(t)dt

      on ei-negatiivisen käyrän alle jäävä ala välillä [a,x] missä a vakio.

      A'(x) = (A[x h] - A[x])/h kun h->0
      ja toisaalta A(x h) - A(x) = f(x)*h kun h->0

      => A'(x) = f(x)

      tämä tarkoittaa että A(x) on f:n integraalifunktio.

    • Myöhäinen lintu

      Unohtakaa kaikki Riemannit, portaat ja muut. Peruskysymys kuuluu: Miksi integraalifunktion muutos on sama kuin sen derivaatan kuvaajan ja x-akselin välisen pinta-alan muutos.

      Lähtökohtaisesti uskomme, että derivaatta kuvaa funktion muuttumiskulmaa tietyssä käyrän kohdassa eli on sen tangentti. Tällöin sen arvo on dy/dx ja nimenomaan tuon dy:n pitäisi olla sama kuin po. pinta-alan muutos.

      No, derivaatan arvohan, eli sen etäisyys x-akselista sillä kohdalla on sama kuin tuo dy/dx, eli se on laskettavan alan korkeus. Alan leveys taas on dx. Siten pinta-ala on leveys kertaa korkeus eli dx kertaa dy/dx = dy, mikä siis on sama kuin integraalifunktion lisäys tuolla välillä. Voidaan siis todeta, että integraalifunktion arvo muuttuu yhtä paljon kuin sen derivaatan ja x-akselin välinen pinta-ala. Tämän perusteella on helppo uskoa, että sen arvo seuraa uskollisesti tätä pinta-alaa, oli muutos mikä tahansa.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Kumpi vetoaa enemmän sinuun

      Kaivatun ulkonäkö vai persoonallisuus? Ulkonäössä kasvot vai vartalo? Mikä luonteessa viehättää eniten? Mikä ulkonäössä?
      Ikävä
      84
      1679
    2. Ei se mene ohi ajan kanssa

      Näin se vaan on.
      Ikävä
      85
      1212
    3. Tavoitteeni onkin ärsyttää

      Sua niin turhaudut ja unohdat koko homman
      Ikävä
      110
      1113
    4. Tunnistebiisi

      Laita joku tunnistebiisi, niin tiedän ett oot täällä ja kaipaat ehkä mua
      Ikävä
      66
      880
    5. Taidat tykätä linnuista paljon

      Mikä on sun lemppari ☺️😉🥹🦢🐦‍⬛🦉🦜🦚
      Ikävä
      102
      861
    6. Okei nyt mä ymmärrän

      Olet siis noin rakastunut, se selittää. Onneksesi tunne on molemminpuolinen 😘
      Ikävä
      56
      808
    7. Miks käyttäydyt noin?

      Välttelet kaikkia kohtaamisia...
      Ikävä
      47
      721
    8. Ei sun tarvi jännittää enää

      en yritä enää mitään. Tiedän että olin mauton ja sössin kaiken.
      Ikävä
      36
      712
    9. Olen huolissani

      Että joku päivä ihastut/rakastut siskooni. Ja itseasiassa haluaisin, ettei hän olisi mitenkään sinun tyyppiäsi ja pitäis
      Ikävä
      47
      661
    10. Minkälainen ääni mulla on mies

      Sinun mielestä?
      Ikävä
      33
      643
    Aihe