Täällä on mukava pulma, johon löytyi yllättävän helppo ratkaisukin pienellä pohtimisella. Ajattelin, että ehkä joku muukin saa iloa vastausta etsiessään:
Miten voit jakaa 1000 euroa kymmeneen kirjekuoreen niin, että voit antaa minkä tahansa tasaeurosumman yhden ja tuhannen euron välillä ojentamalla yhden tai useamman kirjekuoren?
Pulmaan voi vastata myös tuolla ja osallistua leffalippujen arvontaan:
http://www.eluova.fi/index.php?id=1056
1000 euroa kymmeneen kirjekuoreen
18
756
Vastaukset
- opettaja..
Olet poikeassa erittäin hauska tehtävä.
Tämän tyyppiset tehtävät ovat hyviä, koska näissä
saa jo vähän miettiä. Harmittavasti koulutehtävät eivät
ole enää lainkaan tämänlaisia, vaan pelkkää laskentoa. - E.d.K.
Tuontapaiset tehtävät oli ihan kivoja joskus 60- luvulla, mutta aika ajoi ohi kun rinnalle tuli atk.ssa käytössä oleva binäärijärjestelmä, joka on nykyään kai yhtä tuttua kuin 10-järjestelmäkin.
1o kirjeeseen saisi 1023 € .kin Eikö vaan ?- Matemaatikko(vähän)
Ei onnistu minulla, matemaattisesti mahdoton, vai onko?
- pyydetään laittamaan
kirjeisiin nimenomaan ja tarkalleen 1000 euroa. Ei enempää eikä vähempää.
- valinta kysymys
pyydetään laittamaan kirjoitti:
kirjeisiin nimenomaan ja tarkalleen 1000 euroa. Ei enempää eikä vähempää.
Siihen viimeseen laitetaan vaan sen 23 € vähemmän, eli 489 € jos halutaan tasan 1000.
Edelliset on 2.n potenssit 1...9. - valinta kysymys
valinta kysymys kirjoitti:
Siihen viimeseen laitetaan vaan sen 23 € vähemmän, eli 489 € jos halutaan tasan 1000.
Edelliset on 2.n potenssit 1...9.Potenssit on tietenkin 0...8 , eli 1, 2, 4, 8, 16....
- opettaja..
Sitten kun asiat osaa, niin asia olisi näin, mutta binäärijärjestelmää ei ikävä kyllä
osata niin hyvin kuin kuvittelet. - mutta tämän
valinta kysymys kirjoitti:
Siihen viimeseen laitetaan vaan sen 23 € vähemmän, eli 489 € jos halutaan tasan 1000.
Edelliset on 2.n potenssit 1...9.jälkeen summat 489-511 voidaan muodostaa kahdellakin eri tavalla.
Tämä ei tietenkään ole ongelma.
Sitä sen sijaan voisimme pohdiskella, onko tämä ainoa mahdollinen ratkaisu?
74 erilaista ratkaisua.
arkhimedes kirjoitti:
Minkälainen yhtälö tuosta muodostettaisiin??
Ja miten ratkaiset tuon ratkaisujen määrän?epäyhtälön kirjoittaminen onnistuu tätä tehtävää varten melko helpostikin.
En nyt kuitenkaan viitsi vielä paljastaa niitä, koska tuon 'Luova'-pulman vastausaika on vielä kesken.- algebrikko
MattiKSinisalo kirjoitti:
epäyhtälön kirjoittaminen onnistuu tätä tehtävää varten melko helpostikin.
En nyt kuitenkaan viitsi vielä paljastaa niitä, koska tuon 'Luova'-pulman vastausaika on vielä kesken.Minäkin ratkaisin tehtävän epäyhtälöllä, mutta löysin 78 erilaista ratkaisua.
algebrikko kirjoitti:
Minäkin ratkaisin tehtävän epäyhtälöllä, mutta löysin 78 erilaista ratkaisua.
Oletko tarkistanut ratkaisusi?
Esiintyykö 'ratkaisuissa' luku 501?
Yritä siinä tapauksessa muodostaa luku 500.- algebrikko
MattiKSinisalo kirjoitti:
Oletko tarkistanut ratkaisusi?
Esiintyykö 'ratkaisuissa' luku 501?
Yritä siinä tapauksessa muodostaa luku 500.Sivulle näytti tulleen ratkaisuja. Ratkaisuni sisältää joukon {1,...,1000}, joten kyllä siinä joukossa on myös 501. Tehtävä on yhtäpitävä seuraavan tehtävän kanssa. Etsi niiden epänegatiivisten kokonaislukujen h, i, j ja k lukumäärä, joille 16h 8j 4i 2k < = 23.
- algebrikko
algebrikko kirjoitti:
Sivulle näytti tulleen ratkaisuja. Ratkaisuni sisältää joukon {1,...,1000}, joten kyllä siinä joukossa on myös 501. Tehtävä on yhtäpitävä seuraavan tehtävän kanssa. Etsi niiden epänegatiivisten kokonaislukujen h, i, j ja k lukumäärä, joille 16h 8j 4i 2k < = 23.
Mulla olikin jäänyt bugi koodiin, ja ratkaisuja onkin tosiaan 74. Ratkaisuni idea:
Olkoon E={e_1,...,e_{10} } kuorissa olevat eurosummat. Tällöin E:llä on 1023 epätyhjää osajoukkoa, ja niistä voidaan valita luvut, joiden summa on mikä tahansa luku väliltä 1,...,1000. Siten enintään 23 arvoa tuolta väliltä voidaan esittää useammalla kuin yhdellä tavalla.
Tästä seuraa aika nopeasti, että on oltava e_i=2^{i-1} kun i in {1,...,5}. Sitten huomataan, että e_k - algebrikko
algebrikko kirjoitti:
Mulla olikin jäänyt bugi koodiin, ja ratkaisuja onkin tosiaan 74. Ratkaisuni idea:
Olkoon E={e_1,...,e_{10} } kuorissa olevat eurosummat. Tällöin E:llä on 1023 epätyhjää osajoukkoa, ja niistä voidaan valita luvut, joiden summa on mikä tahansa luku väliltä 1,...,1000. Siten enintään 23 arvoa tuolta väliltä voidaan esittää useammalla kuin yhdellä tavalla.
Tästä seuraa aika nopeasti, että on oltava e_i=2^{i-1} kun i in {1,...,5}. Sitten huomataan, että e_kIndeksit meni väärin. Ei
e_6=2^5-h, e^7=2^6-h-i, e^8=2^7-2h-i, e^9=2^8-2i-j-k ja e^{10} MattiKSinisalo kirjoitti:
Oletko tarkistanut ratkaisusi?
Esiintyykö 'ratkaisuissa' luku 501?
Yritä siinä tapauksessa muodostaa luku 500.1,2,4,8,16,31,63,125,250,500
1,2,4,8,16,31,63,125,251,499
1,2,4,8,16,31,63,126,249,500
1,2,4,8,16,31,63,126,250,499
1,2,4,8,16,31,63,126,251,498
1,2,4,8,16,31,63,126,252,497
1,2,4,8,16,32,62,125,250,500
1,2,4,8,16,32,62,125,251,499
1,2,4,8,16,32,62,126,249,500
1,2,4,8,16,32,62,126,250,499
1,2,4,8,16,32,62,126,251,498
1,2,4,8,16,32,62,126,252,497
1,2,4,8,16,32,63,124,250,500
1,2,4,8,16,32,63,124,251,499
1,2,4,8,16,32,63,125,249,500
1,2,4,8,16,32,63,125,250,499
1,2,4,8,16,32,63,125,251,498
1,2,4,8,16,32,63,125,252,497
1,2,4,8,16,32,63,126,248,500
1,2,4,8,16,32,63,126,249,499
1,2,4,8,16,32,63,126,250,498
1,2,4,8,16,32,63,126,251,497
1,2,4,8,16,32,63,126,252,496
1,2,4,8,16,32,63,126,253,495
1,2,4,8,16,32,63,127,247,500
1,2,4,8,16,32,63,127,248,499
1,2,4,8,16,32,63,127,249,498
1,2,4,8,16,32,63,127,250,497
1,2,4,8,16,32,63,127,251,496
1,2,4,8,16,32,63,127,252,495
1,2,4,8,16,32,63,127,253,494
1,2,4,8,16,32,63,127,254,493
1,2,4,8,16,32,64,123,250,500
1,2,4,8,16,32,64,123,251,499
1,2,4,8,16,32,64,124,249,500
1,2,4,8,16,32,64,124,250,499
1,2,4,8,16,32,64,124,251,498
1,2,4,8,16,32,64,124,252,497
1,2,4,8,16,32,64,125,248,500
1,2,4,8,16,32,64,125,249,499
1,2,4,8,16,32,64,125,250,498
1,2,4,8,16,32,64,125,251,497
1,2,4,8,16,32,64,125,252,496
1,2,4,8,16,32,64,125,253,495
1,2,4,8,16,32,64,126,247,500
1,2,4,8,16,32,64,126,248,499
1,2,4,8,16,32,64,126,249,498
1,2,4,8,16,32,64,126,250,497
1,2,4,8,16,32,64,126,251,496
1,2,4,8,16,32,64,126,252,495
1,2,4,8,16,32,64,126,253,494
1,2,4,8,16,32,64,126,254,493
1,2,4,8,16,32,64,127,246,500
1,2,4,8,16,32,64,127,247,499
1,2,4,8,16,32,64,127,248,498
1,2,4,8,16,32,64,127,249,497
1,2,4,8,16,32,64,127,250,496
1,2,4,8,16,32,64,127,251,495
1,2,4,8,16,32,64,127,252,494
1,2,4,8,16,32,64,127,253,493
1,2,4,8,16,32,64,127,254,492
1,2,4,8,16,32,64,127,255,491
1,2,4,8,16,32,64,128,245,500
1,2,4,8,16,32,64,128,246,499
1,2,4,8,16,32,64,128,247,498
1,2,4,8,16,32,64,128,248,497
1,2,4,8,16,32,64,128,249,496
1,2,4,8,16,32,64,128,250,495
1,2,4,8,16,32,64,128,251,494
1,2,4,8,16,32,64,128,252,493
1,2,4,8,16,32,64,128,253,492
1,2,4,8,16,32,64,128,254,491
1,2,4,8,16,32,64,128,255,490
1,2,4,8,16,32,64,128,256,489- algebrikko
MattiKSinisalo kirjoitti:
1,2,4,8,16,31,63,125,250,500
1,2,4,8,16,31,63,125,251,499
1,2,4,8,16,31,63,126,249,500
1,2,4,8,16,31,63,126,250,499
1,2,4,8,16,31,63,126,251,498
1,2,4,8,16,31,63,126,252,497
1,2,4,8,16,32,62,125,250,500
1,2,4,8,16,32,62,125,251,499
1,2,4,8,16,32,62,126,249,500
1,2,4,8,16,32,62,126,250,499
1,2,4,8,16,32,62,126,251,498
1,2,4,8,16,32,62,126,252,497
1,2,4,8,16,32,63,124,250,500
1,2,4,8,16,32,63,124,251,499
1,2,4,8,16,32,63,125,249,500
1,2,4,8,16,32,63,125,250,499
1,2,4,8,16,32,63,125,251,498
1,2,4,8,16,32,63,125,252,497
1,2,4,8,16,32,63,126,248,500
1,2,4,8,16,32,63,126,249,499
1,2,4,8,16,32,63,126,250,498
1,2,4,8,16,32,63,126,251,497
1,2,4,8,16,32,63,126,252,496
1,2,4,8,16,32,63,126,253,495
1,2,4,8,16,32,63,127,247,500
1,2,4,8,16,32,63,127,248,499
1,2,4,8,16,32,63,127,249,498
1,2,4,8,16,32,63,127,250,497
1,2,4,8,16,32,63,127,251,496
1,2,4,8,16,32,63,127,252,495
1,2,4,8,16,32,63,127,253,494
1,2,4,8,16,32,63,127,254,493
1,2,4,8,16,32,64,123,250,500
1,2,4,8,16,32,64,123,251,499
1,2,4,8,16,32,64,124,249,500
1,2,4,8,16,32,64,124,250,499
1,2,4,8,16,32,64,124,251,498
1,2,4,8,16,32,64,124,252,497
1,2,4,8,16,32,64,125,248,500
1,2,4,8,16,32,64,125,249,499
1,2,4,8,16,32,64,125,250,498
1,2,4,8,16,32,64,125,251,497
1,2,4,8,16,32,64,125,252,496
1,2,4,8,16,32,64,125,253,495
1,2,4,8,16,32,64,126,247,500
1,2,4,8,16,32,64,126,248,499
1,2,4,8,16,32,64,126,249,498
1,2,4,8,16,32,64,126,250,497
1,2,4,8,16,32,64,126,251,496
1,2,4,8,16,32,64,126,252,495
1,2,4,8,16,32,64,126,253,494
1,2,4,8,16,32,64,126,254,493
1,2,4,8,16,32,64,127,246,500
1,2,4,8,16,32,64,127,247,499
1,2,4,8,16,32,64,127,248,498
1,2,4,8,16,32,64,127,249,497
1,2,4,8,16,32,64,127,250,496
1,2,4,8,16,32,64,127,251,495
1,2,4,8,16,32,64,127,252,494
1,2,4,8,16,32,64,127,253,493
1,2,4,8,16,32,64,127,254,492
1,2,4,8,16,32,64,127,255,491
1,2,4,8,16,32,64,128,245,500
1,2,4,8,16,32,64,128,246,499
1,2,4,8,16,32,64,128,247,498
1,2,4,8,16,32,64,128,248,497
1,2,4,8,16,32,64,128,249,496
1,2,4,8,16,32,64,128,250,495
1,2,4,8,16,32,64,128,251,494
1,2,4,8,16,32,64,128,252,493
1,2,4,8,16,32,64,128,253,492
1,2,4,8,16,32,64,128,254,491
1,2,4,8,16,32,64,128,255,490
1,2,4,8,16,32,64,128,256,489Päättelitkö ratkaisut samoin kuin minä eli päädyitkö tarkastelemaan epäyhtälöä i 16h 8j 4i 2k
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Persut ja Tall poppy -syndrooma
Persut ovat uhranneet käytännössä koko elämänsä lannistaakseen tai sabotoidakseen yksilöitä, jotka erottuvat joukosta ky685194Orpo: Seuraavalla hallituksella ei ole yhtään enempää rahaa
Valtiovarainministeriön virka-arvion mukaan julkisen talouden sopeutuksen tarve on noin kymmenen miljardia euroa ensi va2614279Suomen kieli hiipuu vähitellen Vantaalla
nykytahdilla jo joka kolmas vantaalainen on vieraskielinen 2030-luvun alussa. Maahanmuutto, suomalaisten alhainen synty973913Kun puolustusvoimat on huolissaan nuorison huonosta kunnosta
ajatellen varusmiespalvelusta(kun moni joutuu keskeyttään), niin johan tuli joku yliopiston vasemmistonainen selittään,1422247Vain vasemmistolaiset ovat aitoja suomalaisia
Esimerkiksi persut ovat ulkomaalaisen pääomasijoittajan edunvalvojia, eivät auta köyhiä suomalaisia.311611Jos vedetään mutkat suoraksi?
Niin kumpaan ryhmään kuulut? A) Niihin, jotka menevät edellä ja tekevät? Vai B) Niihin, jotka kulkevat perässä ja ar651331Tiesitkö? Kohutun L/over sarjan Juha eli Jani Volanen on tämän julkkisnaisen ex-mies!
Jani Volanen näyttelee L/over - ikuisesti minun psykologisessa trillerissä Juhaa. Mutta tiesitkö, että hän on tämän julk6969Ajattelen sinua
Ajattelen sinua joka päivä, joka hetki… Kaikkea, mitä minun olisi pitänyt sanoa sinulle, enkä osannut sanoa, kaikkea nii35917- 94889
entäs jos yhtenä päivänä kävisi niin
että miehet vaan yhtäkkiä kollektiivisesti kyllästyisivät ja lopettaisivat naisten palvelemisen ja naiset saisivat pärjä137867