1000 euroa kymmeneen kirjekuoreen

-matikanope-

Täällä on mukava pulma, johon löytyi yllättävän helppo ratkaisukin pienellä pohtimisella. Ajattelin, että ehkä joku muukin saa iloa vastausta etsiessään:

Miten voit jakaa 1000 euroa kymmeneen kirjekuoreen niin, että voit antaa minkä tahansa tasaeurosumman yhden ja tuhannen euron välillä ojentamalla yhden tai useamman kirjekuoren?

Pulmaan voi vastata myös tuolla ja osallistua leffalippujen arvontaan:
http://www.eluova.fi/index.php?id=1056

18

756

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • opettaja..

      Olet poikeassa erittäin hauska tehtävä.
      Tämän tyyppiset tehtävät ovat hyviä, koska näissä
      saa jo vähän miettiä. Harmittavasti koulutehtävät eivät
      ole enää lainkaan tämänlaisia, vaan pelkkää laskentoa.

    • E.d.K.

      Tuontapaiset tehtävät oli ihan kivoja joskus 60- luvulla, mutta aika ajoi ohi kun rinnalle tuli atk.ssa käytössä oleva binäärijärjestelmä, joka on nykyään kai yhtä tuttua kuin 10-järjestelmäkin.
      1o kirjeeseen saisi 1023 € .kin Eikö vaan ?

      • Matemaatikko(vähän)

        Ei onnistu minulla, matemaattisesti mahdoton, vai onko?


      • pyydetään laittamaan

        kirjeisiin nimenomaan ja tarkalleen 1000 euroa. Ei enempää eikä vähempää.


      • valinta kysymys
        pyydetään laittamaan kirjoitti:

        kirjeisiin nimenomaan ja tarkalleen 1000 euroa. Ei enempää eikä vähempää.

        Siihen viimeseen laitetaan vaan sen 23 € vähemmän, eli 489 € jos halutaan tasan 1000.
        Edelliset on 2.n potenssit 1...9.


      • valinta kysymys
        valinta kysymys kirjoitti:

        Siihen viimeseen laitetaan vaan sen 23 € vähemmän, eli 489 € jos halutaan tasan 1000.
        Edelliset on 2.n potenssit 1...9.

        Potenssit on tietenkin 0...8 , eli 1, 2, 4, 8, 16....


      • opettaja..

        Sitten kun asiat osaa, niin asia olisi näin, mutta binäärijärjestelmää ei ikävä kyllä
        osata niin hyvin kuin kuvittelet.


      • mutta tämän
        valinta kysymys kirjoitti:

        Siihen viimeseen laitetaan vaan sen 23 € vähemmän, eli 489 € jos halutaan tasan 1000.
        Edelliset on 2.n potenssit 1...9.

        jälkeen summat 489-511 voidaan muodostaa kahdellakin eri tavalla.

        Tämä ei tietenkään ole ongelma.

        Sitä sen sijaan voisimme pohdiskella, onko tämä ainoa mahdollinen ratkaisu?


    • 74 erilaista ratkaisua.

      • Minkälainen yhtälö tuosta muodostettaisiin??
        Ja miten ratkaiset tuon ratkaisujen määrän?


      • arkhimedes kirjoitti:

        Minkälainen yhtälö tuosta muodostettaisiin??
        Ja miten ratkaiset tuon ratkaisujen määrän?

        epäyhtälön kirjoittaminen onnistuu tätä tehtävää varten melko helpostikin.

        En nyt kuitenkaan viitsi vielä paljastaa niitä, koska tuon 'Luova'-pulman vastausaika on vielä kesken.


      • algebrikko
        MattiKSinisalo kirjoitti:

        epäyhtälön kirjoittaminen onnistuu tätä tehtävää varten melko helpostikin.

        En nyt kuitenkaan viitsi vielä paljastaa niitä, koska tuon 'Luova'-pulman vastausaika on vielä kesken.

        Minäkin ratkaisin tehtävän epäyhtälöllä, mutta löysin 78 erilaista ratkaisua.


      • algebrikko kirjoitti:

        Minäkin ratkaisin tehtävän epäyhtälöllä, mutta löysin 78 erilaista ratkaisua.

        Oletko tarkistanut ratkaisusi?

        Esiintyykö 'ratkaisuissa' luku 501?
        Yritä siinä tapauksessa muodostaa luku 500.


      • algebrikko
        MattiKSinisalo kirjoitti:

        Oletko tarkistanut ratkaisusi?

        Esiintyykö 'ratkaisuissa' luku 501?
        Yritä siinä tapauksessa muodostaa luku 500.

        Sivulle näytti tulleen ratkaisuja. Ratkaisuni sisältää joukon {1,...,1000}, joten kyllä siinä joukossa on myös 501. Tehtävä on yhtäpitävä seuraavan tehtävän kanssa. Etsi niiden epänegatiivisten kokonaislukujen h, i, j ja k lukumäärä, joille 16h 8j 4i 2k < = 23.


      • algebrikko
        algebrikko kirjoitti:

        Sivulle näytti tulleen ratkaisuja. Ratkaisuni sisältää joukon {1,...,1000}, joten kyllä siinä joukossa on myös 501. Tehtävä on yhtäpitävä seuraavan tehtävän kanssa. Etsi niiden epänegatiivisten kokonaislukujen h, i, j ja k lukumäärä, joille 16h 8j 4i 2k < = 23.

        Mulla olikin jäänyt bugi koodiin, ja ratkaisuja onkin tosiaan 74. Ratkaisuni idea:

        Olkoon E={e_1,...,e_{10} } kuorissa olevat eurosummat. Tällöin E:llä on 1023 epätyhjää osajoukkoa, ja niistä voidaan valita luvut, joiden summa on mikä tahansa luku väliltä 1,...,1000. Siten enintään 23 arvoa tuolta väliltä voidaan esittää useammalla kuin yhdellä tavalla.

        Tästä seuraa aika nopeasti, että on oltava e_i=2^{i-1} kun i in {1,...,5}. Sitten huomataan, että e_k


      • algebrikko
        algebrikko kirjoitti:

        Mulla olikin jäänyt bugi koodiin, ja ratkaisuja onkin tosiaan 74. Ratkaisuni idea:

        Olkoon E={e_1,...,e_{10} } kuorissa olevat eurosummat. Tällöin E:llä on 1023 epätyhjää osajoukkoa, ja niistä voidaan valita luvut, joiden summa on mikä tahansa luku väliltä 1,...,1000. Siten enintään 23 arvoa tuolta väliltä voidaan esittää useammalla kuin yhdellä tavalla.

        Tästä seuraa aika nopeasti, että on oltava e_i=2^{i-1} kun i in {1,...,5}. Sitten huomataan, että e_k

        Indeksit meni väärin. Ei

        e_6=2^5-h, e^7=2^6-h-i, e^8=2^7-2h-i, e^9=2^8-2i-j-k ja e^{10}


      • MattiKSinisalo kirjoitti:

        Oletko tarkistanut ratkaisusi?

        Esiintyykö 'ratkaisuissa' luku 501?
        Yritä siinä tapauksessa muodostaa luku 500.

        1,2,4,8,16,31,63,125,250,500
        1,2,4,8,16,31,63,125,251,499
        1,2,4,8,16,31,63,126,249,500
        1,2,4,8,16,31,63,126,250,499
        1,2,4,8,16,31,63,126,251,498
        1,2,4,8,16,31,63,126,252,497
        1,2,4,8,16,32,62,125,250,500
        1,2,4,8,16,32,62,125,251,499
        1,2,4,8,16,32,62,126,249,500
        1,2,4,8,16,32,62,126,250,499
        1,2,4,8,16,32,62,126,251,498
        1,2,4,8,16,32,62,126,252,497
        1,2,4,8,16,32,63,124,250,500
        1,2,4,8,16,32,63,124,251,499
        1,2,4,8,16,32,63,125,249,500
        1,2,4,8,16,32,63,125,250,499
        1,2,4,8,16,32,63,125,251,498
        1,2,4,8,16,32,63,125,252,497
        1,2,4,8,16,32,63,126,248,500
        1,2,4,8,16,32,63,126,249,499
        1,2,4,8,16,32,63,126,250,498
        1,2,4,8,16,32,63,126,251,497
        1,2,4,8,16,32,63,126,252,496
        1,2,4,8,16,32,63,126,253,495
        1,2,4,8,16,32,63,127,247,500
        1,2,4,8,16,32,63,127,248,499
        1,2,4,8,16,32,63,127,249,498
        1,2,4,8,16,32,63,127,250,497
        1,2,4,8,16,32,63,127,251,496
        1,2,4,8,16,32,63,127,252,495
        1,2,4,8,16,32,63,127,253,494
        1,2,4,8,16,32,63,127,254,493
        1,2,4,8,16,32,64,123,250,500
        1,2,4,8,16,32,64,123,251,499
        1,2,4,8,16,32,64,124,249,500
        1,2,4,8,16,32,64,124,250,499
        1,2,4,8,16,32,64,124,251,498
        1,2,4,8,16,32,64,124,252,497
        1,2,4,8,16,32,64,125,248,500
        1,2,4,8,16,32,64,125,249,499
        1,2,4,8,16,32,64,125,250,498
        1,2,4,8,16,32,64,125,251,497
        1,2,4,8,16,32,64,125,252,496
        1,2,4,8,16,32,64,125,253,495
        1,2,4,8,16,32,64,126,247,500
        1,2,4,8,16,32,64,126,248,499
        1,2,4,8,16,32,64,126,249,498
        1,2,4,8,16,32,64,126,250,497
        1,2,4,8,16,32,64,126,251,496
        1,2,4,8,16,32,64,126,252,495
        1,2,4,8,16,32,64,126,253,494
        1,2,4,8,16,32,64,126,254,493
        1,2,4,8,16,32,64,127,246,500
        1,2,4,8,16,32,64,127,247,499
        1,2,4,8,16,32,64,127,248,498
        1,2,4,8,16,32,64,127,249,497
        1,2,4,8,16,32,64,127,250,496
        1,2,4,8,16,32,64,127,251,495
        1,2,4,8,16,32,64,127,252,494
        1,2,4,8,16,32,64,127,253,493
        1,2,4,8,16,32,64,127,254,492
        1,2,4,8,16,32,64,127,255,491
        1,2,4,8,16,32,64,128,245,500
        1,2,4,8,16,32,64,128,246,499
        1,2,4,8,16,32,64,128,247,498
        1,2,4,8,16,32,64,128,248,497
        1,2,4,8,16,32,64,128,249,496
        1,2,4,8,16,32,64,128,250,495
        1,2,4,8,16,32,64,128,251,494
        1,2,4,8,16,32,64,128,252,493
        1,2,4,8,16,32,64,128,253,492
        1,2,4,8,16,32,64,128,254,491
        1,2,4,8,16,32,64,128,255,490
        1,2,4,8,16,32,64,128,256,489


      • algebrikko
        MattiKSinisalo kirjoitti:

        1,2,4,8,16,31,63,125,250,500
        1,2,4,8,16,31,63,125,251,499
        1,2,4,8,16,31,63,126,249,500
        1,2,4,8,16,31,63,126,250,499
        1,2,4,8,16,31,63,126,251,498
        1,2,4,8,16,31,63,126,252,497
        1,2,4,8,16,32,62,125,250,500
        1,2,4,8,16,32,62,125,251,499
        1,2,4,8,16,32,62,126,249,500
        1,2,4,8,16,32,62,126,250,499
        1,2,4,8,16,32,62,126,251,498
        1,2,4,8,16,32,62,126,252,497
        1,2,4,8,16,32,63,124,250,500
        1,2,4,8,16,32,63,124,251,499
        1,2,4,8,16,32,63,125,249,500
        1,2,4,8,16,32,63,125,250,499
        1,2,4,8,16,32,63,125,251,498
        1,2,4,8,16,32,63,125,252,497
        1,2,4,8,16,32,63,126,248,500
        1,2,4,8,16,32,63,126,249,499
        1,2,4,8,16,32,63,126,250,498
        1,2,4,8,16,32,63,126,251,497
        1,2,4,8,16,32,63,126,252,496
        1,2,4,8,16,32,63,126,253,495
        1,2,4,8,16,32,63,127,247,500
        1,2,4,8,16,32,63,127,248,499
        1,2,4,8,16,32,63,127,249,498
        1,2,4,8,16,32,63,127,250,497
        1,2,4,8,16,32,63,127,251,496
        1,2,4,8,16,32,63,127,252,495
        1,2,4,8,16,32,63,127,253,494
        1,2,4,8,16,32,63,127,254,493
        1,2,4,8,16,32,64,123,250,500
        1,2,4,8,16,32,64,123,251,499
        1,2,4,8,16,32,64,124,249,500
        1,2,4,8,16,32,64,124,250,499
        1,2,4,8,16,32,64,124,251,498
        1,2,4,8,16,32,64,124,252,497
        1,2,4,8,16,32,64,125,248,500
        1,2,4,8,16,32,64,125,249,499
        1,2,4,8,16,32,64,125,250,498
        1,2,4,8,16,32,64,125,251,497
        1,2,4,8,16,32,64,125,252,496
        1,2,4,8,16,32,64,125,253,495
        1,2,4,8,16,32,64,126,247,500
        1,2,4,8,16,32,64,126,248,499
        1,2,4,8,16,32,64,126,249,498
        1,2,4,8,16,32,64,126,250,497
        1,2,4,8,16,32,64,126,251,496
        1,2,4,8,16,32,64,126,252,495
        1,2,4,8,16,32,64,126,253,494
        1,2,4,8,16,32,64,126,254,493
        1,2,4,8,16,32,64,127,246,500
        1,2,4,8,16,32,64,127,247,499
        1,2,4,8,16,32,64,127,248,498
        1,2,4,8,16,32,64,127,249,497
        1,2,4,8,16,32,64,127,250,496
        1,2,4,8,16,32,64,127,251,495
        1,2,4,8,16,32,64,127,252,494
        1,2,4,8,16,32,64,127,253,493
        1,2,4,8,16,32,64,127,254,492
        1,2,4,8,16,32,64,127,255,491
        1,2,4,8,16,32,64,128,245,500
        1,2,4,8,16,32,64,128,246,499
        1,2,4,8,16,32,64,128,247,498
        1,2,4,8,16,32,64,128,248,497
        1,2,4,8,16,32,64,128,249,496
        1,2,4,8,16,32,64,128,250,495
        1,2,4,8,16,32,64,128,251,494
        1,2,4,8,16,32,64,128,252,493
        1,2,4,8,16,32,64,128,253,492
        1,2,4,8,16,32,64,128,254,491
        1,2,4,8,16,32,64,128,255,490
        1,2,4,8,16,32,64,128,256,489

        Päättelitkö ratkaisut samoin kuin minä eli päädyitkö tarkastelemaan epäyhtälöä i 16h 8j 4i 2k


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Persut ja Tall poppy -syndrooma

      Persut ovat uhranneet käytännössä koko elämänsä lannistaakseen tai sabotoidakseen yksilöitä, jotka erottuvat joukosta ky
      Maailman menoa
      68
      5194
    2. Orpo: Seuraavalla hallituksella ei ole yhtään enempää rahaa

      Valtiovarainministeriön virka-arvion mukaan julkisen talouden sopeutuksen tarve on noin kymmenen miljardia euroa ensi va
      Maailman menoa
      261
      4279
    3. Suomen kieli hiipuu vähitellen Vantaalla

      nykytahdilla jo joka kolmas vantaalainen on vieraskielinen 2030-luvun alussa. Maahanmuutto, suomalaisten alhainen synty
      Maailman menoa
      97
      3913
    4. Kun puolustusvoimat on huolissaan nuorison huonosta kunnosta

      ajatellen varusmiespalvelusta(kun moni joutuu keskeyttään), niin johan tuli joku yliopiston vasemmistonainen selittään,
      Maailman menoa
      142
      2247
    5. Vain vasemmistolaiset ovat aitoja suomalaisia

      Esimerkiksi persut ovat ulkomaalaisen pääomasijoittajan edunvalvojia, eivät auta köyhiä suomalaisia.
      Maailman menoa
      31
      1611
    6. Jos vedetään mutkat suoraksi?

      Niin kumpaan ryhmään kuulut? A) Niihin, jotka menevät edellä ja tekevät? Vai B) Niihin, jotka kulkevat perässä ja ar
      Sinkut
      65
      1331
    7. Tiesitkö? Kohutun L/over sarjan Juha eli Jani Volanen on tämän julkkisnaisen ex-mies!

      Jani Volanen näyttelee L/over - ikuisesti minun psykologisessa trillerissä Juhaa. Mutta tiesitkö, että hän on tämän julk
      Tv-sarjat
      6
      969
    8. Ajattelen sinua

      Ajattelen sinua joka päivä, joka hetki… Kaikkea, mitä minun olisi pitänyt sanoa sinulle, enkä osannut sanoa, kaikkea nii
      Ikävä
      35
      917
    9. Millainen mulle

      Sitten sopisi?
      Ikävä
      94
      889
    10. entäs jos yhtenä päivänä kävisi niin

      että miehet vaan yhtäkkiä kollektiivisesti kyllästyisivät ja lopettaisivat naisten palvelemisen ja naiset saisivat pärjä
      Sinkut
      137
      867
    Aihe