Kokonaislukujen esitys neliöiden summana?

HaastettaKerrakseen

Mikä on pienin sellainen positiivinen kokonaisluku, joka voidaan esittää vähintään 2^6=64 eri tavalla kahden erisuuren positiivisen kokonaisluvun neliöiden summana? Mitkä ovat nämä esitykset?

17

140

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • 7+13

      oliskohan se 2^260, ja luvut tulisi 2^n 4^m=2^260=> n 2m=260

      n= 4,8,12....256 , m=128, 126,124,...2 , esim. (2^12) (4^124)=(2^6)^2 (4^62)^2

      • 3+1

        Siinä on tainnut mennä laskusäännöt vähän sekaisin. ( 2^n)*(2^(2m))=2^(n (2m))
        2^n 4^m on tuo mikä on


      • 7+13
        3+1 kirjoitti:

        Siinä on tainnut mennä laskusäännöt vähän sekaisin. ( 2^n)*(2^(2m))=2^(n (2m))
        2^n 4^m on tuo mikä on

        Sitten muutetaan vaan se luku, eli luku on vaikka nyt tuo (2^6)^2 (4^62)^2

        ja kaikki luvut ovat 2^n 4^m, n= 4,8,12....256 , m=128, 126,124,...2


      • 7+13
        7+13 kirjoitti:

        Sitten muutetaan vaan se luku, eli luku on vaikka nyt tuo (2^6)^2 (4^62)^2

        ja kaikki luvut ovat 2^n 4^m, n= 4,8,12....256 , m=128, 126,124,...2

        oikeastaan kaikki luvut ovat: ((2^(n/2))^2) ((4^(m/2))^2)


    • 15+20

      Vähän epäselvä tehtäväksianto. Sanoisin että 20. Voidaan esittää yli 64 tavalla neljän ykkösen ja neljän kakkosen neliösummana.

    • tarkennusta?

      Ovatko esitykset 1^2 2^2 ja 2^2 1^2 samoja vai eriä?

      • HaastettaKerrakseen

        Nimimerkin 'tarkennusta?' esitykset ovat samoja, ne lasketaan vain yhdeksi esitykseksi.


    • HaastettaKerrakseen

      Täsmennetään vielä. Tässä tarkoitetaan siis esityksiä kahden erisuuren neliöluvun summana.
      Neliölukuja ovat 1^2, 2^2=4, 3^2=9, 4^2=16, 5^2=25, jne.

    • HaastettaKerrakseen

      Annetaanpas selvyyden vuoksi esimerkki. Luku 325 voidaan esittää kolmella tavalla kahden erisuuren neliöluvun summana, sillä

      325
      = 1^2 18^2 = 1 324
      = 6^2 17^2 = 36 289
      = 10^2 15^2 = 100 225

    • paraabeliä

      paraabelin n=m^2 h^2 kautta pähkäiltynä 64^2 65^4

      • paraabeliä

        Tuntuisi, että tuosta paraabelistä se voisi löytyä, mutta ei onnistu...


    • miettijä
      • Minä löysin tuohon tehtävään tietokoneellani pienimmän ratkaisun n = 1215306625. Tämän luvun tekijöihinjako on n=1215306625=5^3*13*17*29*37*41. Kaikki tekijät ovat muotoa 4k 1.

        Luvun B arvoksi kaavassa (16) saadaan B=7. Koska 64=2^6, herää epäilys, että kaavassa (17) olisi jokin pieni kirjoitusvirhe.

        Samat 64 ratkaisua, jotka omalla koneellani sain, antaa Wolfram Alpha komennolla:
        PowersRepresentations[1215306625,2,2]


      • miettijä
        MattiKSinisalo kirjoitti:

        Minä löysin tuohon tehtävään tietokoneellani pienimmän ratkaisun n = 1215306625. Tämän luvun tekijöihinjako on n=1215306625=5^3*13*17*29*37*41. Kaikki tekijät ovat muotoa 4k 1.

        Luvun B arvoksi kaavassa (16) saadaan B=7. Koska 64=2^6, herää epäilys, että kaavassa (17) olisi jokin pieni kirjoitusvirhe.

        Samat 64 ratkaisua, jotka omalla koneellani sain, antaa Wolfram Alpha komennolla:
        PowersRepresentations[1215306625,2,2]

        Juu. Tämä 1215306625 on oikea vastaus.

        "Luvun B arvoksi kaavassa (16) saadaan B=7. Koska 64=2^6, herää epäilys, että kaavassa (17) olisi jokin pieni kirjoitusvirhe."

        Hmm. Sain tuosta kaavasta (16) B=4*2*2*2*2*2=128, ja siitä puolet on 64. Laskit väärin tuon B:n arvon. Tuon kaavan voinee pyöritellä Gaussin kokonaislukujen avulla.


      • miettijä kirjoitti:

        Juu. Tämä 1215306625 on oikea vastaus.

        "Luvun B arvoksi kaavassa (16) saadaan B=7. Koska 64=2^6, herää epäilys, että kaavassa (17) olisi jokin pieni kirjoitusvirhe."

        Hmm. Sain tuosta kaavasta (16) B=4*2*2*2*2*2=128, ja siitä puolet on 64. Laskit väärin tuon B:n arvon. Tuon kaavan voinee pyöritellä Gaussin kokonaislukujen avulla.

        No niinpäs teinkin, kun ajattelin jotain muuta, väsyneenä ja flunssaisena. Mutta mitäpä siitä, kun homma nyt on kunnossa.

        Gaussin kokonaislukuja minäkin vähän mietiskelin tämän probleeman yhteydessä,


    • JaakkoS

      Tässäpä esitykset tulostava GAP-ohjelmalistaus ( http://www.gap-system.org/ ), joka tulostaa esitykset:

      n:=1215306625;
      for a in [0..RootInt(n)] do
      b:=n-a^2;
      c:=RootInt(b);
      if(IsSquareInt(b)) then
      if (a

      • JaakkoS

        Hups. Yritän uudestaan

        n:=1215306625;
        for a in [0..RootInt(n)] do
        b:=n-a^2;
        c:=RootInt(b);
        if(IsSquareInt(b)) then
        if (a


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Lataus pakkaskelissä

      En olisi koskaan ostanut sähköautoa jos olisin tajunnut että ne eivät lataa pakkasissa suurteholatauksella vaan istut tu
      Hybridi- ja sähköautot
      105
      4104
    2. Kun väestö ikääntyy ja veronmaksajat vähenee, mitä sitten vasemmistolaiset?

      Maahanmuutto ei vaan ole ratkaisu väestön ikääntymiseen. Maahanmuutto lykkää ja hidastaa väestön ikääntymistä ja työv
      Maailman menoa
      57
      2318
    3. Miksei Trump ole kiinnostunut Suomen valloittamisesta?

      Täällähän on enemmän turvetta kuin Norjalla öljyä. Eikö Ttump ole turvenuija?
      Maailman menoa
      74
      1600
    4. Kyllä mä suren

      Sitä että mikään ei ole kuten ennen. Ei niitä hetkiä ja katseita. Toisaalta keho lepää eikä enää tarvitse sitä tuskaa ko
      Ikävä
      5
      1054
    5. Jos vielä joku päivä nähtäis...

      Miten suhtautuisit minuun, mies?
      Ikävä
      66
      844
    6. Nyt se on varmaa kuntajakoselvitys

      Ensi viikolla tuöee kuntaministeri ulos ja kertoo asiasta.
      Ähtäri
      21
      803
    7. Olet mies aika ailahteleva luonteeltasi

      Olen nähnyt kuinka olet iloinen, sosiaalinen ja osallistuva. Autat ja kannustat muita. Ja sitten olen nähnyt kuinka istu
      Ikävä
      118
      803
    8. Laitetaan nyt kirjaimet kohdilleen

      kuka rakastaa ja ketä ?
      Ikävä
      39
      782
    9. Olisin valmis tutustumaan uudelleen

      En menneisyyden kautta vaan haluaisin tutustua ihmiseen, jollaiseksi olet kasvanut.
      Ikävä
      49
      748
    10. Tiedät sen

      Esitän välinpitämätöntä, mutta en ole sitä oikeasti.
      Ikävä
      62
      748
    Aihe