Jos minulla on 6 metriä pitkä rekkitanko, jossa roikun keskeltä(paino 90 kg), niin mikä on taivutusmomentin arvo metrin etäisyydellä tangon toisesta päästä?
Taivutusmomentti
18
13672
Vastaukset
- ögh
Onko rekkitanko pultattu kiinteästi laipalla seinään siten että se ei pääsee kääntymään, vai onko tuenta niin joustava että se vastaa käytännössä niveltukea? Ilmeisesti tanko on kuitenkin symmetrisesti tuettu.
Antamillasi tiedoilla ei voi laskea taivutusmomentin kuin niveltuennassa, ja siinäkin pitäisi olettaa että tanko on niin jäykkä että se on vähän taipunut.
(Jos taipuma on pieni ja tanko niveltuettu momentiksi tulee metrin etäisyydellä tuesta 450Nm)
Paljon taipuneessa tangossa nimittäin vaikuttaa myös normaalivoima, ja sen suuruutta ei voi tietää ennenkuin tietää kuinka jäykkä tanko on.
Analyysi siis huutaa materiaalivakioita ja poikkileikkauksen mittoja.- ögh
voi momentin laskea kiinteässä tuennassakin. Mutta ehtona on nimenomaan se pieni taipuma. Tällöin metrin etäisyydelllä tuesta momentti on -225N
- aloittaja
Eli lujuusopin puolelle ei tarvitse mennä. Tanko ei pääse kääntymään ja toinen tuki ottaa vastaan pelkästään y-suuntaista kuormaa.
Mielellään jos kertoisit myös miten päädyit lopputulokseen. Menetelmä on nimenomaan se jonka haluan tietää, ei lopputulos.
Kiitos - ögh
aloittaja kirjoitti:
Eli lujuusopin puolelle ei tarvitse mennä. Tanko ei pääse kääntymään ja toinen tuki ottaa vastaan pelkästään y-suuntaista kuormaa.
Mielellään jos kertoisit myös miten päädyit lopputulokseen. Menetelmä on nimenomaan se jonka haluan tietää, ei lopputulos.
KiitosAinoastaan siinä tapauksessa voi laskea ilman lujuusoppia jos tanko on nivelisesti tuettu kummastakin päästä.
Silloin keskellä vaikuttaa voima 900N, jonka tukirektiot jakautuvat tasan kummallekin tuelle eli 450N kummallekin tuelle. Noh sitten katkaistaan tanko metrin etäisyydeltä tukea ja lasketaan vaan "voima kertaa varsi on momentti" eli 450N * 1m = 450Nm
( merkki tarkoittaa nyt sitä että alapinta venyy)
Mutta kysymässäsi tilanteessa toinen tuki on kiinteä ja toinen nivel, vai? Kyseessä on silloin hyperstaattinen tuenta (tukireaktioita enemmän kuin on tasapainoyhtälöitä[3]). Siitä ei selviä pelkillä tasapainoehdoilla -> tarvitaan lujuusoppia. Mutta osoittautuu, että materiaalivakioita ja poikkipintasuureita ei tarvitse tietää lineaarisessa tapauksessa voimien/momenttien selvittämiseen. - Aloittaja
ögh kirjoitti:
Ainoastaan siinä tapauksessa voi laskea ilman lujuusoppia jos tanko on nivelisesti tuettu kummastakin päästä.
Silloin keskellä vaikuttaa voima 900N, jonka tukirektiot jakautuvat tasan kummallekin tuelle eli 450N kummallekin tuelle. Noh sitten katkaistaan tanko metrin etäisyydeltä tukea ja lasketaan vaan "voima kertaa varsi on momentti" eli 450N * 1m = 450Nm
( merkki tarkoittaa nyt sitä että alapinta venyy)
Mutta kysymässäsi tilanteessa toinen tuki on kiinteä ja toinen nivel, vai? Kyseessä on silloin hyperstaattinen tuenta (tukireaktioita enemmän kuin on tasapainoyhtälöitä[3]). Siitä ei selviä pelkillä tasapainoehdoilla -> tarvitaan lujuusoppia. Mutta osoittautuu, että materiaalivakioita ja poikkipintasuureita ei tarvitse tietää lineaarisessa tapauksessa voimien/momenttien selvittämiseen.Toisessa päässä kiinteä tuki ja toisessa päässä sellainen tuenta että se ei ota vastaan vaakasuuntaisia voimia. Olisikohan rullatuki tjsp.
Mitenkäs saa selvitettyä tukireaktioiden jakautumisen siinä tapauksessa foima ei kohdistukaan keskelle tankoa? - Aloittaja
ögh kirjoitti:
voi momentin laskea kiinteässä tuennassakin. Mutta ehtona on nimenomaan se pieni taipuma. Tällöin metrin etäisyydelllä tuesta momentti on -225N
Miten tämä laskeminen sitten tapahtuisi kiinteän tuen tapauksessa?
- ögh
Aloittaja kirjoitti:
Miten tämä laskeminen sitten tapahtuisi kiinteän tuen tapauksessa?
kysymys on sellaisesta lujuusopin tavallisen taivutusteorian asiasta (jota en ala johtamaan), että taivutusmomentti
M(x) = -EIv''(x)
jossa ' tarkoittaa d/dx, E on kimmomoduli, I on poikkileikkauksen neliömomentti ja v on tangon taipuma(=siirtymä).
Jos tanko on kiinteästi tuettu kummastakin päästä vaikuttaa kummassakin päässä yhtäsuuret tukivoimat ja tukimomentit. Merkitään pystysuuntaista tukivoimaa A:lla ja tukimomenttia B:llä. Ja kun voimakin vaikuttaa keskellä on tilanne täysin symmetrinen.
Symmetrian takia tanko voidaan laskennassa "katkaista" keskeltä ja asettaa katkaisukohtaan liukutuki joka mahdollistaa liikkeen pystysuunnassa mutta estää kääntymisen ja liikkeen vaakasuunnassa. Myös voima täytyy tällöin puolittaa. Tällöin laskentamallissa alkupäässä on kiinteä tuki ja loppupäässä pystysuuntainen liukutuki jossa vaikuttaa puolet pienempi voima kuin alkuperäisessä tilanteessa.
Taivutusmomentin yhtälö on siis muotoa:
M(x) = Ax - B
Kun se sijoitetaan uylempänä olevaan yhtälöön saadaan:
v''(x) = -(Ax - B)/EI
josta integroimalla saadaan
v'(x) = -(1/2*Ax^2 - Bx)/EI C
v(x) = -(1/6*Ax^3 - 1/2*Bx^2)/EI Cx D
Kiinteän tuen reunaehdot ovat v(0) = 0 ja v'(0) = 0
Kun sijoitetaan reunaehdot v(x):n ja v'(x):n yhtälöihin saadaan D = 0, ja C = 0
Liukutuen ehdot ovat v'(L/2)=0 ja Q(L/2) = F/2 (tai nolla, riippuu kummaltapuolella pistevoimaa asiaa ajattelee)
Q tarkoittaa leikkausvoimaa. Se on Q(x) = M'(x) = A. Siis A = F/2 (sen olisi saanut tietysti yksinkertaisemmin pystysuuntaisesta tasapainoyhtälöstä).
Sitten ensimmäisestä saadaan kun huomioidaan A = F/2:
v'(L/2) = -(1/16*FL^2 - 1/2*BL)/EI = 0
Josta saadaan ratkaistua:
B = -FL/8
Kiinteästi kummastakin päästä tuetussa palkissa vaikuttaa siis tukivoimat F/2 ja tukimomentit -FL/8 , tietysti aina siihen suuntaan että se vastustaa kuormitusta. Tukivoiman positiivinen suunta on vastakkainen kuin kuormituksen ja taipuman positiivinen suunta, ja momentti on positiivinen silloin kuin "positiivinen" pinta venyy. Tukireaktiot eivät siis riipukkaan palkin jäykkyydestä, mutta niiden laskemisessa täytyy koukata lujuusopin kautta.
Metrin etäisyydellä tuesta vaikuttaa siis kysymässäsi tapauksessa kiinteästi tuetussa tapauksessa taivutusmomentti
M = 450N*1m - 900N*6m/8 = 450Nm - 675Nm = -225Nm
Vastaavalla tavalla ongelman voi laskea epäsymmetrisissäkin ja useammasta kohtaa tuetuissakin tapauksissa. Tällöin yhtälöistä vain tulee paloittaan määriteltyjä. Kuitenkin ainaa löytyy tasan yhtä monta tuntematonta kuin on yhtälöitäkin, vaikka olis sata tukirektiota.
Tosin ei niitä taipumia ja tukireaktioita käytännössä näin lasketa. Kirjallisuudesta löytyy taulukoita joihin on laskettu valmiiksi vastaavat suureet eri tilanteiisa, kuormituksilla ja geometrisillä parametreillä joita yhdistelemällä saa monimutkaisenkin rakenteen ratkaistua. Lisäksi on olemassa ns. yksikkövoimaperiaate joka on erittäin tehokas analyyttinen työkalu monimutkaisenkin kaksiulotteisen kehä-/ristikkorakenteen ratkaisuun. Sen avulla ongelman nimittäin saa puettua helposti matriisimuotoon, joka on taas omiaan tietokoneratkaisua silmälläpitäen. Toki elementtimenetelmälläkin saa ratkaistua(noh, mitä sillä ei pysty ratkaisemaan?), mutta sen "virittely" vie hieman enemmän aikaa. Sillä tosin kaikki vähänkin vaikeammat/työläämmät tehtävät nykyään lasketaan. - käytäntö
ögh kirjoitti:
kysymys on sellaisesta lujuusopin tavallisen taivutusteorian asiasta (jota en ala johtamaan), että taivutusmomentti
M(x) = -EIv''(x)
jossa ' tarkoittaa d/dx, E on kimmomoduli, I on poikkileikkauksen neliömomentti ja v on tangon taipuma(=siirtymä).
Jos tanko on kiinteästi tuettu kummastakin päästä vaikuttaa kummassakin päässä yhtäsuuret tukivoimat ja tukimomentit. Merkitään pystysuuntaista tukivoimaa A:lla ja tukimomenttia B:llä. Ja kun voimakin vaikuttaa keskellä on tilanne täysin symmetrinen.
Symmetrian takia tanko voidaan laskennassa "katkaista" keskeltä ja asettaa katkaisukohtaan liukutuki joka mahdollistaa liikkeen pystysuunnassa mutta estää kääntymisen ja liikkeen vaakasuunnassa. Myös voima täytyy tällöin puolittaa. Tällöin laskentamallissa alkupäässä on kiinteä tuki ja loppupäässä pystysuuntainen liukutuki jossa vaikuttaa puolet pienempi voima kuin alkuperäisessä tilanteessa.
Taivutusmomentin yhtälö on siis muotoa:
M(x) = Ax - B
Kun se sijoitetaan uylempänä olevaan yhtälöön saadaan:
v''(x) = -(Ax - B)/EI
josta integroimalla saadaan
v'(x) = -(1/2*Ax^2 - Bx)/EI C
v(x) = -(1/6*Ax^3 - 1/2*Bx^2)/EI Cx D
Kiinteän tuen reunaehdot ovat v(0) = 0 ja v'(0) = 0
Kun sijoitetaan reunaehdot v(x):n ja v'(x):n yhtälöihin saadaan D = 0, ja C = 0
Liukutuen ehdot ovat v'(L/2)=0 ja Q(L/2) = F/2 (tai nolla, riippuu kummaltapuolella pistevoimaa asiaa ajattelee)
Q tarkoittaa leikkausvoimaa. Se on Q(x) = M'(x) = A. Siis A = F/2 (sen olisi saanut tietysti yksinkertaisemmin pystysuuntaisesta tasapainoyhtälöstä).
Sitten ensimmäisestä saadaan kun huomioidaan A = F/2:
v'(L/2) = -(1/16*FL^2 - 1/2*BL)/EI = 0
Josta saadaan ratkaistua:
B = -FL/8
Kiinteästi kummastakin päästä tuetussa palkissa vaikuttaa siis tukivoimat F/2 ja tukimomentit -FL/8 , tietysti aina siihen suuntaan että se vastustaa kuormitusta. Tukivoiman positiivinen suunta on vastakkainen kuin kuormituksen ja taipuman positiivinen suunta, ja momentti on positiivinen silloin kuin "positiivinen" pinta venyy. Tukireaktiot eivät siis riipukkaan palkin jäykkyydestä, mutta niiden laskemisessa täytyy koukata lujuusopin kautta.
Metrin etäisyydellä tuesta vaikuttaa siis kysymässäsi tapauksessa kiinteästi tuetussa tapauksessa taivutusmomentti
M = 450N*1m - 900N*6m/8 = 450Nm - 675Nm = -225Nm
Vastaavalla tavalla ongelman voi laskea epäsymmetrisissäkin ja useammasta kohtaa tuetuissakin tapauksissa. Tällöin yhtälöistä vain tulee paloittaan määriteltyjä. Kuitenkin ainaa löytyy tasan yhtä monta tuntematonta kuin on yhtälöitäkin, vaikka olis sata tukirektiota.
Tosin ei niitä taipumia ja tukireaktioita käytännössä näin lasketa. Kirjallisuudesta löytyy taulukoita joihin on laskettu valmiiksi vastaavat suureet eri tilanteiisa, kuormituksilla ja geometrisillä parametreillä joita yhdistelemällä saa monimutkaisenkin rakenteen ratkaistua. Lisäksi on olemassa ns. yksikkövoimaperiaate joka on erittäin tehokas analyyttinen työkalu monimutkaisenkin kaksiulotteisen kehä-/ristikkorakenteen ratkaisuun. Sen avulla ongelman nimittäin saa puettua helposti matriisimuotoon, joka on taas omiaan tietokoneratkaisua silmälläpitäen. Toki elementtimenetelmälläkin saa ratkaistua(noh, mitä sillä ei pysty ratkaisemaan?), mutta sen "virittely" vie hieman enemmän aikaa. Sillä tosin kaikki vähänkin vaikeammat/työläämmät tehtävät nykyään lasketaan.M=FxL/4 ko. tapauksessa
- ögh
käytäntö kirjoitti:
M=FxL/4 ko. tapauksessa
Ei ainakaan missään minun mainitsemassa tapauksessa...
- ögh
ögh kirjoitti:
kysymys on sellaisesta lujuusopin tavallisen taivutusteorian asiasta (jota en ala johtamaan), että taivutusmomentti
M(x) = -EIv''(x)
jossa ' tarkoittaa d/dx, E on kimmomoduli, I on poikkileikkauksen neliömomentti ja v on tangon taipuma(=siirtymä).
Jos tanko on kiinteästi tuettu kummastakin päästä vaikuttaa kummassakin päässä yhtäsuuret tukivoimat ja tukimomentit. Merkitään pystysuuntaista tukivoimaa A:lla ja tukimomenttia B:llä. Ja kun voimakin vaikuttaa keskellä on tilanne täysin symmetrinen.
Symmetrian takia tanko voidaan laskennassa "katkaista" keskeltä ja asettaa katkaisukohtaan liukutuki joka mahdollistaa liikkeen pystysuunnassa mutta estää kääntymisen ja liikkeen vaakasuunnassa. Myös voima täytyy tällöin puolittaa. Tällöin laskentamallissa alkupäässä on kiinteä tuki ja loppupäässä pystysuuntainen liukutuki jossa vaikuttaa puolet pienempi voima kuin alkuperäisessä tilanteessa.
Taivutusmomentin yhtälö on siis muotoa:
M(x) = Ax - B
Kun se sijoitetaan uylempänä olevaan yhtälöön saadaan:
v''(x) = -(Ax - B)/EI
josta integroimalla saadaan
v'(x) = -(1/2*Ax^2 - Bx)/EI C
v(x) = -(1/6*Ax^3 - 1/2*Bx^2)/EI Cx D
Kiinteän tuen reunaehdot ovat v(0) = 0 ja v'(0) = 0
Kun sijoitetaan reunaehdot v(x):n ja v'(x):n yhtälöihin saadaan D = 0, ja C = 0
Liukutuen ehdot ovat v'(L/2)=0 ja Q(L/2) = F/2 (tai nolla, riippuu kummaltapuolella pistevoimaa asiaa ajattelee)
Q tarkoittaa leikkausvoimaa. Se on Q(x) = M'(x) = A. Siis A = F/2 (sen olisi saanut tietysti yksinkertaisemmin pystysuuntaisesta tasapainoyhtälöstä).
Sitten ensimmäisestä saadaan kun huomioidaan A = F/2:
v'(L/2) = -(1/16*FL^2 - 1/2*BL)/EI = 0
Josta saadaan ratkaistua:
B = -FL/8
Kiinteästi kummastakin päästä tuetussa palkissa vaikuttaa siis tukivoimat F/2 ja tukimomentit -FL/8 , tietysti aina siihen suuntaan että se vastustaa kuormitusta. Tukivoiman positiivinen suunta on vastakkainen kuin kuormituksen ja taipuman positiivinen suunta, ja momentti on positiivinen silloin kuin "positiivinen" pinta venyy. Tukireaktiot eivät siis riipukkaan palkin jäykkyydestä, mutta niiden laskemisessa täytyy koukata lujuusopin kautta.
Metrin etäisyydellä tuesta vaikuttaa siis kysymässäsi tapauksessa kiinteästi tuetussa tapauksessa taivutusmomentti
M = 450N*1m - 900N*6m/8 = 450Nm - 675Nm = -225Nm
Vastaavalla tavalla ongelman voi laskea epäsymmetrisissäkin ja useammasta kohtaa tuetuissakin tapauksissa. Tällöin yhtälöistä vain tulee paloittaan määriteltyjä. Kuitenkin ainaa löytyy tasan yhtä monta tuntematonta kuin on yhtälöitäkin, vaikka olis sata tukirektiota.
Tosin ei niitä taipumia ja tukireaktioita käytännössä näin lasketa. Kirjallisuudesta löytyy taulukoita joihin on laskettu valmiiksi vastaavat suureet eri tilanteiisa, kuormituksilla ja geometrisillä parametreillä joita yhdistelemällä saa monimutkaisenkin rakenteen ratkaistua. Lisäksi on olemassa ns. yksikkövoimaperiaate joka on erittäin tehokas analyyttinen työkalu monimutkaisenkin kaksiulotteisen kehä-/ristikkorakenteen ratkaisuun. Sen avulla ongelman nimittäin saa puettua helposti matriisimuotoon, joka on taas omiaan tietokoneratkaisua silmälläpitäen. Toki elementtimenetelmälläkin saa ratkaistua(noh, mitä sillä ei pysty ratkaisemaan?), mutta sen "virittely" vie hieman enemmän aikaa. Sillä tosin kaikki vähänkin vaikeammat/työläämmät tehtävät nykyään lasketaan.Mitätön merkkivirhe tuli.
Saadaan siis B = FL/8
Eli M = F/2 * x - FL/8
Ja siitä saadaan se, että momentti on tuilla -FL/8. - käytäntö
ögh kirjoitti:
Mitätön merkkivirhe tuli.
Saadaan siis B = FL/8
Eli M = F/2 * x - FL/8
Ja siitä saadaan se, että momentti on tuilla -FL/8.kasi viivan alla tasainen kuorma.
- öögh
käytäntö kirjoitti:
kasi viivan alla tasainen kuorma.
"kasi viivan alla tasainen kuorma."
kasi mitä sinä kasi sanoa kasi päällä alla kasi viiva kuorma WTF?? Are you kidding me? Siis näin suomeksi sanottuna en käsitä alkuunkaan mitä tarkoitat. - E.d.K.
Aloittaja kirjoitti:
Toisessa päässä kiinteä tuki ja toisessa päässä sellainen tuenta että se ei ota vastaan vaakasuuntaisia voimia. Olisikohan rullatuki tjsp.
Mitenkäs saa selvitettyä tukireaktioiden jakautumisen siinä tapauksessa foima ei kohdistukaan keskelle tankoa?Ttaivutusmomentti riippuu palkin kimmo-ominaisuuksista jos tuennassa on enemmän kuin 2 tukea/tukipistettä.
Periaate on, että taipuman toinen derivaatta on M /E I, (momentti /pintahitausmomentti *kimmokerroin)
Momentille voidaan aina kirjoittaa yhtälö, jossa voi olla tunnettuja tai tuntemattomia suureita, ja kun se integroidaan, saadaan taipumasta ja taipumakulmasta reunaehtoja riittävästi useimpien tapausten määrittämiseen. - Käädändö
öögh kirjoitti:
"kasi viivan alla tasainen kuorma."
kasi mitä sinä kasi sanoa kasi päällä alla kasi viiva kuorma WTF?? Are you kidding me? Siis näin suomeksi sanottuna en käsitä alkuunkaan mitä tarkoitat.Siis kaiva Mohrin taulukot äläkä laske päin persettä.
- Aloittaja
Tämä homma selveni. Kiitos.
Paremmin osaat nää hommat ku meidän luennoitsija - Timo harjakainen
375 Nm
- Äijät juoskaa
Nosturiauto kuski pakene henkesi edestä.
- lisää tietoja tarvit
Paljonko se rekkitankosi painaa ?
Mikäli toisessa päässä on se rullatuki, niin onko sekin nivelletty vaiko sittenkin niveltämätön ?
Onko rekkitankosi siten mitoitettu, ettei myötäraja ylity, eli tilannetta voidaan tarkastella lineaarisella approksimaatiolla ?
Vai onko taipuma peräti mitätöntä luokkaa, jos ei, niin onko 6m pituus taipuneessa tilanteessa vaiko kuormittamattoman tangon pituus ?
Mitataanko se metri toisesta päästä tankoa pitkin vai vaakasuoraan ?
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 2172899
Yh:n pihalla aina eri auto
Ompa jännä seurata ohiajaessa, että millainen auto on nyt erään yksinhuoltajan pihassa. Näyttääpä siellä taaskin olevan1302876En vittujakaan enää välitä sinusta nainen
Toivottavasti en näe sinua enää koskaan. Jos näen, niin en ole näkevinäni. Et merkitse minulle enää mitään.791846Olet minua
vanhempi, mutta se ei vaikuta tunteisiini. Tunnen enemmän kuin ystävyyttä. Olo on avuton. Ikävöin koko ajan. Yhtäkkiä va751462Exän käytös hämmentää (taas)
Osaisivatko palstan herrat kenties helpottaa tulkitsemista? Toki naispuolisetkit saavat antaa tulkinta-apua, mutta nyt k2371362- 471108
- 991021
- 111909
Susanna Laine paljastaa - Tästä farmilaiset yllättyvät joka kaudella: "Ettei olekaan niin paljon..."
Farmi Suomi vie Pieksämäelle maaseudulle ja suosikkirealityn juontajan puikoissa on Susanna Laine. Uudella kaudella muka6853- 46843