Olen siis aivan kujalla.
Pystysuorassa olevan jousen päähän ripustettu kappale venyttää jousta 2,0 cm.
Kappaletta vedetään 5,0 cm alkuperäisen tasapainoaseman alapuolelle ja päästetään
sitten irti.
a) Kuinka suurella taajuudella systeemi värähtelee?
b) Kuinka suurella nopeudella kappale ohittaa tasapainoasemansa?
Tiedän, että taajuus F=1/(2*pi)*sqrt(k/m), mutta miten toimitaan kun massaa ei ole ilmotettu missään?
Ja b-kohdasta ei ole hajuakaan.
Värähtelyn taajuus
28
194
Vastaukset
- voimatasapaino
F = k s = mg
k/m = g/s - Värähtely
b) Nyt siirtymän lauseke on x = A cos(ωt) ja nopeuden v = ẋ = Aω sin(ωt). Mikähän mahtaa olla jälkimmäisen lausekkeen arvo ajanhetkellä, jolloin x:n lauseke on 0 ja t > 0?
- Kujalla
''Mikähän mahtaa olla jälkimmäisen lausekkeen arvo ajanhetkellä, jolloin x:n lauseke on 0 ja t > 0?''
0?- Uutta trigonometriaa
Mikä on sitten sellainen reaalinen kulman arvo, jolloin sekä sini että kosini ovat nollia?
Sitähän tuo ehdotuksesi tarkoittaa.
- 2442
Nopeus v on suurimmillaan, kun kappale ohittaa tasapainoaseman. Silloin sini on ykkönen.
- Kujalla
''Nopeus v on suurimmillaan, kun kappale ohittaa tasapainoaseman. Silloin sini on ykkönen.''
Eli v=Aω(ωt)?- Uutta trigonometriaa
Mistä tuo sulkulauseke oikein ilmestyi?
- Kujalla
Uutta trigonometriaa kirjoitti:
Mistä tuo sulkulauseke oikein ilmestyi?
Öhh, jos sin on siinä ohittaessaan tasapainopisteen 1, niin eihän se sulkulauseke häviä lausekkeesta v = Aω sin(ωt)?
- 1612
v = Aω
- 1618
sin(ωt) vaihtelee -1 ja 1 välillä. Nopeus on suurimmillaan, kun se saa arvon 1 eli "sini on ykkönen".
- Kujalla
Noinko yksinkertainen se sitten kaikenkaikkiaan olikin
- aeija
Ei ole kyllä mikään yksinkertainen noin pähkäiltynä, mutta tuo b-kohta onkin tarkoitettu laskettavaksi energiaperiaatteella: ½*k*0,05^2=½*m*v^2.
Laitan tähän nyt vähän piirrostakin , ja kuvassa 0-taso asetetaan tasapainoasemaan:
http://aijaa.com/VEXZvv - aeija
aeija kirjoitti:
Ei ole kyllä mikään yksinkertainen noin pähkäiltynä, mutta tuo b-kohta onkin tarkoitettu laskettavaksi energiaperiaatteella: ½*k*0,05^2=½*m*v^2.
Laitan tähän nyt vähän piirrostakin , ja kuvassa 0-taso asetetaan tasapainoasemaan:
http://aijaa.com/VEXZvvihan se viimeinen termi paperissa pitää olla T, eikä T/4
- 4+5
aeija kirjoitti:
Ei ole kyllä mikään yksinkertainen noin pähkäiltynä, mutta tuo b-kohta onkin tarkoitettu laskettavaksi energiaperiaatteella: ½*k*0,05^2=½*m*v^2.
Laitan tähän nyt vähän piirrostakin , ja kuvassa 0-taso asetetaan tasapainoasemaan:
http://aijaa.com/VEXZvvaeija onkin pitkään ollut "piilossa"
- aeija
aeija kirjoitti:
ihan se viimeinen termi paperissa pitää olla T, eikä T/4
Siinähän on sotkettu yksiköitä oikein tuelta, senttejä ja metrejä sekaisin.
Korjataan nyt ainakin se: http://aijaa.com/erkVbV
Siitä taitaa tulla nopeudeksi v=1,1 m/s
- 19+15
Ei tuossa mitään energioita tarvita. Riittä ihan se, että tietää kappaleen paikan ajan funktiona. Siitä sitten derivoimalla nopeus.
- aeija
Tehdääskin niin, kun jäikin vähän vaivaamaankin, tämähän lähtee liikkeelle sieltä ala-asennosta, ja laitetaan heti alkuun se käyrän yhtälön johtaminen:
http://aijaa.com/7U0t0S
Sitten jatketaan: http://aijaa.com/W3vB36. Tuli vielä hankalampi. - aeija
aeija kirjoitti:
Tehdääskin niin, kun jäikin vähän vaivaamaankin, tämähän lähtee liikkeelle sieltä ala-asennosta, ja laitetaan heti alkuun se käyrän yhtälön johtaminen:
http://aijaa.com/7U0t0S
Sitten jatketaan: http://aijaa.com/W3vB36. Tuli vielä hankalampi.Lopussa korjattuna yksiköt: http://aijaa.com/Zw3CFy
- WAlpha
Työkaluja käyttäen:
http://www.wolframalpha.com/input/?i=dsolve {m*y"(t) m*9.81/0.05*y(t)=0, y'(0)=0, y(0)=-0.05}- aeija
jos olisi näin, niin täsmäisi noitten minun viimeisten sepustuksien kanssa
http://www.wolframalpha.com/input/?i=dsolve {m*y"(t) m*9.81/0.02*y(t)=0, y'(0)=0, y(0)=-0.05} - WAlpha
aeija kirjoitti:
jos olisi näin, niin täsmäisi noitten minun viimeisten sepustuksien kanssa
http://www.wolframalpha.com/input/?i=dsolve {m*y"(t) m*9.81/0.02*y(t)=0, y'(0)=0, y(0)=-0.05}Olet oikeassa.
- 123123
WAlpha kirjoitti:
Olet oikeassa.
ei ole oikein
- 123123
123123 kirjoitti:
ei ole oikein
Tulos on oikein, mutta diffyhtälöä on jo sievennetty g- ja jousivoiman osalta.
- Kysyn vain
123123 kirjoitti:
Tulos on oikein, mutta diffyhtälöä on jo sievennetty g- ja jousivoiman osalta.
Luuletko, että aloittanut lumiukko olisi yleisestä symbolisesta ratkaisusta saanut mitään vihjettä?
- 123123
Kysyn vain kirjoitti:
Luuletko, että aloittanut lumiukko olisi yleisestä symbolisesta ratkaisusta saanut mitään vihjettä?
Koordinaatiston valinnassa on kakai luontevaa vaihtoehtoa. Molemmat johtavat lopulta samaan lopputulokseen, kuten pitääkin.
Kysyn vain kirjoitti:
Luuletko, että aloittanut lumiukko olisi yleisestä symbolisesta ratkaisusta saanut mitään vihjettä?
Selvennetään asiaa.
Periaate on että voima on k*s , jossa s on poikkeama tasapainoasemasta ja se on yhtä kuin m*s''(t) (m*a)
Lisäksi tiedetään että m *g = k*2cm ja päädytään yhtälöön
-g/2cm*s = s''(t) ja loppu on laskentaa.
--> -50g s^2 c = v^2 , s=5cm, v =0, c = 0.125*g -> v= 1.107m/s
s'(t) = sqrt(0.125*g - 50*g*(s(t))^2) jne, josta t = 2pii *sqrt(0.02/g) =0.28 s ja taajuus 1/t = 3.52.
Ps
Toive aeija : lle, hieman selvempää tekstiä, ymmärtäminen olisi huomattavasti helpompaa.e.d.k kirjoitti:
Selvennetään asiaa.
Periaate on että voima on k*s , jossa s on poikkeama tasapainoasemasta ja se on yhtä kuin m*s''(t) (m*a)
Lisäksi tiedetään että m *g = k*2cm ja päädytään yhtälöön
-g/2cm*s = s''(t) ja loppu on laskentaa.
--> -50g s^2 c = v^2 , s=5cm, v =0, c = 0.125*g -> v= 1.107m/s
s'(t) = sqrt(0.125*g - 50*g*(s(t))^2) jne, josta t = 2pii *sqrt(0.02/g) =0.28 s ja taajuus 1/t = 3.52.
Ps
Toive aeija : lle, hieman selvempää tekstiä, ymmärtäminen olisi huomattavasti helpompaa.En malta olla jatkamatta.
Näissä yksinkertaisissa tapauksissa integrointi on kohtuuttoman hankalaa (tai ohjelmia vaativaa), vaikka pienellä päättelyllä pääsee paljon vähemmällä.
Edellä oli jo maininta että energiaperiaatteella saadaan nopeus värähtelyn puolivälissä (=max).
Tähän tapaukseen voidaan kuvitella virtuaalinen värähtely kohtisuorassa suunnassa ja 90 asteen vaihesiirrolla, joka ei vaikuta alkuperäisen suuntaiseen liikkeeseen, mutta kappaleen liike olisi ympyräliikettä, johon pätee keskipakovoiman ja jousivoiman tasapaino eli m*v^2/s = k*s, josta v on sama kuin energiaperiaatteellakin eli v=s*sqrt(k/m), ja kun m on k*0.02/g
v= s*sqrt(g/0.02)
Kun virtuaalivärähtelijä on kiertänyt täyden kierroksen, matka on 2*pii*s, josta aika saadaan jakamalla matka nopeudella, siis
t= 2*pii*sqrt(0.02/g)
Ei integrointia , ei vaikeita lausekkeita , ei tietokoneavusteisia ohjelmia, vain pari perus laskutoimitusta, siinä kaikki.
- 6511
Tässä ratkaisu "perinteisellä tyylillä".
Otetaan selkeyden vuoksi ensin koordinaatistoksi venyttämättömän jousen nollakohta. Voimatasapainosta saadaan yhtälö:
my'' ky mg = 0
y'' (k/m) y g = 0
Tasapainotilassa y' ja y'' = 0, joten y = -g (m/k). Tämän verran jousi siis venyy alaspäin. Venymä on -0.02 m, joten siitä saadaan k/m = g/0.02. Yhtälö voidaan nyt panna myös muotoon:
y'' (g/0.02) y g = 0
Valitaan uusi muuttuja z = y 0.02. Alkutilanteen tasapainossa y = -0.02, joten z = 0. Lisäksi z' = y' ja z'' = y''. Yhtälö saadaan muotoon:
z'' (g/0.02) (z-0.02) g = 0
z'' (g/0.02)z - g g = 0
z'' (g/0.02) z = 0
Kyseessä on perinteinen värähtely-yhtälö. Merkitään vielä
g/0.02 = w**2
z'' w**2 z = 0
Yhtälön ratkaisuksi kelpaa sekä sini(wt) että cos(wt). Haetaan ratkaisua muodossa:
z(t) = Asin(wt) Bcos(wt)
Tällöin
z'(t) = wAcos(wt) - wBsin(wt) = v(t)
Alkuehdoista määritetään kertoimet A ja B.
z(0) = -0.05 --> B = -0.05/w
z'(0) = 0 = wA --> A = 0
Ratkaisu on
z(t) = - 0.05 cos(wt)
ja nopeus
v(t) = 0.05 w sin(wt)
w = sqrt( 9.81/0.02) = 2 pi f, josta saadan f = 3.52 Hz. Maksiminopeus v_max = 0.05 w = 1.107 m/s.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Mitä aiot tehdä uudenvuoden aattona
Mitä olet suunnitellut tekeväsi uudenvuoden aattona ja aiotko ensi vuonna tehdä jotain muutoksia tai uudenvuoden lupauks1943799Marin sitä, Marin tätä, yhyy yhyy, persut jaksaa vollottaa
On nuo persut kyllä surkeaa porukkaa. Edelleen itkevät jonkun Marinin perään, vaikka itse ovat tuhonneet Suomen kansan t512682- 1591327
Väestönsiirtoa itään?
Ano "the Russo" Turtiainen sai poliittisen turvapaikan Venäjältä. Pian lähtee varmaan Nazima Nuzima ja Kiljusen väki per741250Muistattekos kuinka persujen Salainen Akentti kävi Putinin leirillä
Hakemassa jamesbondimaista vakoiluoppia paikan päällä Venäjällä? Siitä ei edes Suomea suojeleva viranomainen saanut puhu151230Ikävä sinua..
Kauan on aikaa kulunut ja asioita tapahtunut. Mutta sinä M-ies olet edelleen vain mielessäni. En tiedä loinko sinusta va101139- 46924
Vuoden luetuimmat: Mikä on Pelle Miljoonan taiteilijaeläkkeen suuruus?
Pelle Miljoonan eläkkeen suuruus kiinnosti lukijoita tänä vuonna. Artikkeli on Suomi24 Viihteen luetuimpia juttuja v. 2019920- 40835
Riikka Purra sanoo, että sietokykyni vittumaisiin ihmisiin alkaa olla lopussa.
https://www.iltalehti.fi/politiikka/a/be8f784d-fa24-44d6-b59a-b9b83b629b28 Riikka Purra sanoo medialle suorat sanat vitt208785