Värähtelyn taajuus

Kujalla

Olen siis aivan kujalla.

Pystysuorassa olevan jousen päähän ripustettu kappale venyttää jousta 2,0 cm.
Kappaletta vedetään 5,0 cm alkuperäisen tasapainoaseman alapuolelle ja päästetään
sitten irti.
a) Kuinka suurella taajuudella systeemi värähtelee?
b) Kuinka suurella nopeudella kappale ohittaa tasapainoasemansa?

Tiedän, että taajuus F=1/(2*pi)*sqrt(k/m), mutta miten toimitaan kun massaa ei ole ilmotettu missään?
Ja b-kohdasta ei ole hajuakaan.

28

194

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • voimatasapaino

      F = k s = mg
      k/m = g/s

    • Värähtely

      b) Nyt siirtymän lauseke on x = A cos(ωt) ja nopeuden v = ẋ = Aω sin(ωt). Mikähän mahtaa olla jälkimmäisen lausekkeen arvo ajanhetkellä, jolloin x:n lauseke on 0 ja t > 0?

    • Kujalla

      ''Mikähän mahtaa olla jälkimmäisen lausekkeen arvo ajanhetkellä, jolloin x:n lauseke on 0 ja t > 0?''

      0?

      • Uutta trigonometriaa

        Mikä on sitten sellainen reaalinen kulman arvo, jolloin sekä sini että kosini ovat nollia?
        Sitähän tuo ehdotuksesi tarkoittaa.


    • 2442

      Nopeus v on suurimmillaan, kun kappale ohittaa tasapainoaseman. Silloin sini on ykkönen.

    • Kujalla

      ''Nopeus v on suurimmillaan, kun kappale ohittaa tasapainoaseman. Silloin sini on ykkönen.''

      Eli v=Aω(ωt)?

      • Uutta trigonometriaa

        Mistä tuo sulkulauseke oikein ilmestyi?


      • Kujalla
        Uutta trigonometriaa kirjoitti:

        Mistä tuo sulkulauseke oikein ilmestyi?

        Öhh, jos sin on siinä ohittaessaan tasapainopisteen 1, niin eihän se sulkulauseke häviä lausekkeesta v = Aω sin(ωt)?


    • 1612

      v = Aω

    • 1618

      sin(ωt) vaihtelee -1 ja 1 välillä. Nopeus on suurimmillaan, kun se saa arvon 1 eli "sini on ykkönen".

    • Kujalla

      Noinko yksinkertainen se sitten kaikenkaikkiaan olikin

      • aeija

        Ei ole kyllä mikään yksinkertainen noin pähkäiltynä, mutta tuo b-kohta onkin tarkoitettu laskettavaksi energiaperiaatteella: ½*k*0,05^2=½*m*v^2.

        Laitan tähän nyt vähän piirrostakin , ja kuvassa 0-taso asetetaan tasapainoasemaan:
        http://aijaa.com/VEXZvv


      • aeija
        aeija kirjoitti:

        Ei ole kyllä mikään yksinkertainen noin pähkäiltynä, mutta tuo b-kohta onkin tarkoitettu laskettavaksi energiaperiaatteella: ½*k*0,05^2=½*m*v^2.

        Laitan tähän nyt vähän piirrostakin , ja kuvassa 0-taso asetetaan tasapainoasemaan:
        http://aijaa.com/VEXZvv

        ihan se viimeinen termi paperissa pitää olla T, eikä T/4


      • 4+5
        aeija kirjoitti:

        Ei ole kyllä mikään yksinkertainen noin pähkäiltynä, mutta tuo b-kohta onkin tarkoitettu laskettavaksi energiaperiaatteella: ½*k*0,05^2=½*m*v^2.

        Laitan tähän nyt vähän piirrostakin , ja kuvassa 0-taso asetetaan tasapainoasemaan:
        http://aijaa.com/VEXZvv

        aeija onkin pitkään ollut "piilossa"


      • aeija
        aeija kirjoitti:

        ihan se viimeinen termi paperissa pitää olla T, eikä T/4

        Siinähän on sotkettu yksiköitä oikein tuelta, senttejä ja metrejä sekaisin.
        Korjataan nyt ainakin se: http://aijaa.com/erkVbV
        Siitä taitaa tulla nopeudeksi v=1,1 m/s


    • 19+15

      Ei tuossa mitään energioita tarvita. Riittä ihan se, että tietää kappaleen paikan ajan funktiona. Siitä sitten derivoimalla nopeus.

      • aeija

        Tehdääskin niin, kun jäikin vähän vaivaamaankin, tämähän lähtee liikkeelle sieltä ala-asennosta, ja laitetaan heti alkuun se käyrän yhtälön johtaminen:
        http://aijaa.com/7U0t0S

        Sitten jatketaan: http://aijaa.com/W3vB36. Tuli vielä hankalampi.


      • aeija

    • WAlpha
      • aeija

      • WAlpha

      • 123123
        WAlpha kirjoitti:

        Olet oikeassa.

        ei ole oikein


      • 123123
        123123 kirjoitti:

        ei ole oikein

        Tulos on oikein, mutta diffyhtälöä on jo sievennetty g- ja jousivoiman osalta.


      • Kysyn vain
        123123 kirjoitti:

        Tulos on oikein, mutta diffyhtälöä on jo sievennetty g- ja jousivoiman osalta.

        Luuletko, että aloittanut lumiukko olisi yleisestä symbolisesta ratkaisusta saanut mitään vihjettä?


      • 123123
        Kysyn vain kirjoitti:

        Luuletko, että aloittanut lumiukko olisi yleisestä symbolisesta ratkaisusta saanut mitään vihjettä?

        Koordinaatiston valinnassa on kakai luontevaa vaihtoehtoa. Molemmat johtavat lopulta samaan lopputulokseen, kuten pitääkin.


      • Kysyn vain kirjoitti:

        Luuletko, että aloittanut lumiukko olisi yleisestä symbolisesta ratkaisusta saanut mitään vihjettä?

        Selvennetään asiaa.

        Periaate on että voima on k*s , jossa s on poikkeama tasapainoasemasta ja se on yhtä kuin m*s''(t) (m*a)
        Lisäksi tiedetään että m *g = k*2cm ja päädytään yhtälöön
        -g/2cm*s = s''(t) ja loppu on laskentaa.

        --> -50g s^2 c = v^2 , s=5cm, v =0, c = 0.125*g -> v= 1.107m/s

        s'(t) = sqrt(0.125*g - 50*g*(s(t))^2) jne, josta t = 2pii *sqrt(0.02/g) =0.28 s ja taajuus 1/t = 3.52.

        Ps
        Toive aeija : lle, hieman selvempää tekstiä, ymmärtäminen olisi huomattavasti helpompaa.


      • e.d.k kirjoitti:

        Selvennetään asiaa.

        Periaate on että voima on k*s , jossa s on poikkeama tasapainoasemasta ja se on yhtä kuin m*s''(t) (m*a)
        Lisäksi tiedetään että m *g = k*2cm ja päädytään yhtälöön
        -g/2cm*s = s''(t) ja loppu on laskentaa.

        --> -50g s^2 c = v^2 , s=5cm, v =0, c = 0.125*g -> v= 1.107m/s

        s'(t) = sqrt(0.125*g - 50*g*(s(t))^2) jne, josta t = 2pii *sqrt(0.02/g) =0.28 s ja taajuus 1/t = 3.52.

        Ps
        Toive aeija : lle, hieman selvempää tekstiä, ymmärtäminen olisi huomattavasti helpompaa.

        En malta olla jatkamatta.

        Näissä yksinkertaisissa tapauksissa integrointi on kohtuuttoman hankalaa (tai ohjelmia vaativaa), vaikka pienellä päättelyllä pääsee paljon vähemmällä.

        Edellä oli jo maininta että energiaperiaatteella saadaan nopeus värähtelyn puolivälissä (=max).
        Tähän tapaukseen voidaan kuvitella virtuaalinen värähtely kohtisuorassa suunnassa ja 90 asteen vaihesiirrolla, joka ei vaikuta alkuperäisen suuntaiseen liikkeeseen, mutta kappaleen liike olisi ympyräliikettä, johon pätee keskipakovoiman ja jousivoiman tasapaino eli m*v^2/s = k*s, josta v on sama kuin energiaperiaatteellakin eli v=s*sqrt(k/m), ja kun m on k*0.02/g
        v= s*sqrt(g/0.02)
        Kun virtuaalivärähtelijä on kiertänyt täyden kierroksen, matka on 2*pii*s, josta aika saadaan jakamalla matka nopeudella, siis
        t= 2*pii*sqrt(0.02/g)

        Ei integrointia , ei vaikeita lausekkeita , ei tietokoneavusteisia ohjelmia, vain pari perus laskutoimitusta, siinä kaikki.


    • 6511

      Tässä ratkaisu "perinteisellä tyylillä".

      Otetaan selkeyden vuoksi ensin koordinaatistoksi venyttämättömän jousen nollakohta. Voimatasapainosta saadaan yhtälö:
      my'' ky mg = 0
      y'' (k/m) y g = 0

      Tasapainotilassa y' ja y'' = 0, joten y = -g (m/k). Tämän verran jousi siis venyy alaspäin. Venymä on -0.02 m, joten siitä saadaan k/m = g/0.02. Yhtälö voidaan nyt panna myös muotoon:

      y'' (g/0.02) y g = 0

      Valitaan uusi muuttuja z = y 0.02. Alkutilanteen tasapainossa y = -0.02, joten z = 0. Lisäksi z' = y' ja z'' = y''. Yhtälö saadaan muotoon:

      z'' (g/0.02) (z-0.02) g = 0
      z'' (g/0.02)z - g g = 0
      z'' (g/0.02) z = 0

      Kyseessä on perinteinen värähtely-yhtälö. Merkitään vielä
      g/0.02 = w**2
      z'' w**2 z = 0

      Yhtälön ratkaisuksi kelpaa sekä sini(wt) että cos(wt). Haetaan ratkaisua muodossa:
      z(t) = Asin(wt) Bcos(wt)
      Tällöin
      z'(t) = wAcos(wt) - wBsin(wt) = v(t)

      Alkuehdoista määritetään kertoimet A ja B.
      z(0) = -0.05 --> B = -0.05/w
      z'(0) = 0 = wA --> A = 0

      Ratkaisu on
      z(t) = - 0.05 cos(wt)
      ja nopeus
      v(t) = 0.05 w sin(wt)

      w = sqrt( 9.81/0.02) = 2 pi f, josta saadan f = 3.52 Hz. Maksiminopeus v_max = 0.05 w = 1.107 m/s.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Mitä aiot tehdä uudenvuoden aattona

      Mitä olet suunnitellut tekeväsi uudenvuoden aattona ja aiotko ensi vuonna tehdä jotain muutoksia tai uudenvuoden lupauks
      Sinkut
      194
      3799
    2. Marin sitä, Marin tätä, yhyy yhyy, persut jaksaa vollottaa

      On nuo persut kyllä surkeaa porukkaa. Edelleen itkevät jonkun Marinin perään, vaikka itse ovat tuhonneet Suomen kansan t
      Maailman menoa
      51
      2682
    3. Mitäköhän vuosi

      2026 tuo tullessaan?
      Ikävä
      159
      1327
    4. Väestönsiirtoa itään?

      Ano "the Russo" Turtiainen sai poliittisen turvapaikan Venäjältä. Pian lähtee varmaan Nazima Nuzima ja Kiljusen väki per
      Helsinki
      74
      1250
    5. Muistattekos kuinka persujen Salainen Akentti kävi Putinin leirillä

      Hakemassa jamesbondimaista vakoiluoppia paikan päällä Venäjällä? Siitä ei edes Suomea suojeleva viranomainen saanut puhu
      Maailman menoa
      15
      1230
    6. Ikävä sinua..

      Kauan on aikaa kulunut ja asioita tapahtunut. Mutta sinä M-ies olet edelleen vain mielessäni. En tiedä loinko sinusta va
      Ikävä
      10
      1139
    7. Kuumalle kaivatulle tiedoksi

      Tykkään susta!
      Ikävä
      46
      924
    8. Vuoden luetuimmat: Mikä on Pelle Miljoonan taiteilijaeläkkeen suuruus?

      Pelle Miljoonan eläkkeen suuruus kiinnosti lukijoita tänä vuonna. Artikkeli on Suomi24 Viihteen luetuimpia juttuja v. 20
      Suomalaiset julkkikset
      19
      920
    9. Nyt musta tuntuu

      Et alat päästämään kokonaan irti..
      Ikävä
      40
      835
    10. Riikka Purra sanoo, että sietokykyni vittumaisiin ihmisiin alkaa olla lopussa.

      https://www.iltalehti.fi/politiikka/a/be8f784d-fa24-44d6-b59a-b9b83b629b28 Riikka Purra sanoo medialle suorat sanat vitt
      Maailman menoa
      208
      785
    Aihe