LYHYT MATIKKA, APUA!!!!

99erica

Tarvitsisin apua tässä lyhyen matikan tehtävässä ——>

Liisi tallettaa joka kuukauden alussa 150 euroa tilille, jonka korko on 3 % p.a. (Huomaa: p.a. eli per annum, vuodessa.) Kuinka paljon rahaa on nostettavissa viiden vuoden kuluttua?

6

270

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Noinkohan

      Voi olettaa että tallettaminen aloitetaan vuoden alussa. Korko lasketaan kai kunkin vuoden keskitalletuksille, ja ne ovat 900, 2700, 4500, 6300 ja 8100 euroa.

    • Ohman4

      Pankit laskenevat mikä mitenkin. Matemaattinen lasku on seuraava:

      Jos vuotuinen korko = p ja kuukauden alussa talletetaan summa s niin kuukauden lopussa se on kasvanut määrään s(1 p)^(1/12. Toisen kuukauden lopussa tästä on tullut s(1 p)^(2/12) ja vuoden kuluttua se on s(1 p)^(12/12)= s(1 p) eli vuotuinen korko on p.

      Joka kuukauden alussa talletetaan summa s viiden vuoden aikana eli 60 kertaa ja tilillä on
      summa S kuudennen vuoden 1. päivänä .

      S = s ( ((1 p)^(1/12)) ^60 ((1 p)^(1/12))^59 ... (1 p)^(1/12)) =

      s(1 p)^(1/12)* ( 1 (1 p)^(1/12) (1 p)^(2/12) ... (1 p)^(59/12))=

      s(1 p)^(1/12) * ((1 p)^(60/12) - 1) / ( (1 p)^(1/12) - 1). Kun s = 150 ja p = 0,03 saadaan

      S = 150*1,03^(1/12) * (1,03^5 - 1)/(1,03^(1/12) - 1) = 9711.

      Tuossa siis laskettiin geometrisen progression summa missä kahden peräkkäisen termin suhde oli (1 p)^(1/12).

    • Jaa, tuo p.a. viittaisi nollaan euroon.

    • Vielä vähän lisätietoa. En edelleenkään ota kantaa siihen, miten eri pankit todellisuudessa laskevat näitä korkoja.

      Joskus kuukausikorkona käytetään lukua p/12 kun p on vuosikorko. Tämä on yllä esittämäni koron approksimaatio. Katsotaan Taylorin sarjaa

      1 p)^(1/12) = 1 p/12 1/2! * 1/12 * (1/12 - 1) p^2 ...

      Tämän sarjan termit ovat vuorotellen positiivisia ja negatiivisia joten kun sarja katkaistaan n:nen termin jälkeen niin sen jäännöstermi on itseisarvoltann pienempi kuin sarjan (n 1):s termi ja samanmerkkinen kuin tämä.

      Joten l (1 p)^(1/12) - (1 p/12) l < 1/2 * 11/144 * p^2.

      Kun p = 0,03 tuo yläraja on 0,000034375.

      Tarkka arvo l 1,03^(1/12) - (1 0,03/12) l = l 1,00246627 - 1,0025 l = 0,00003373.

      Tuo 1 p/12 on siis tarkan arvon (1 p)^(1/12) approksimaatio.

      Laskuesimerkin tapauksessa on

      S = 150*1,0025* (1,0025^60 - 1)/(1,0025-1) = 9721.

      Tallettaja voittaisi 10 euroa tuolla tuolla approksimaatiolla laskettaessa tarkkaan arvoon verrattuna.

      • Taylorin sarja : (1 p)^(1/12) = ...

        Iski taas tuo painovirhepaholainen.


    • paperossiloota-arvio

      Ensimmäinne talletus ehtii kasvaa korkoa 60 kk. Sille korkotekijäksi tulee (1 0.03)^(1/12)^60 =1.593. Viimeinen talletus ehtii kasvaa vain kuukauden. Sen korkotekijäksi tulee 1.03^(1/12)=1.0025. Korkotekijöiden keskiarvo on 1.081. Sillä kerrotaan talletetut rahat eli 60*150*1.082 = 9729 euroa on sitten nostettavissa.

      Melko lähellä tuota "tarkkaa arvoa" 9711 e. Näin, kun korot ovat "matalalla". Muhkeammilla koroilla epätarkkuus tietysti kasvaa.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Janne Ahonen E R O A A

      Taas 2 lasta jää vaille ehjää perhettä!
      Kotimaiset julkkisjuorut
      177
      3731
    2. Tekisi niin mieli laittaa sulle viestiä

      En vaan ole varma ollaanko siihen vielä valmiita, vaikka halua löytyykin täältä suunnalta, ja ikävää, ja kaikkea muuta m
      Ikävä
      85
      1668
    3. Miksi ihmeessä?

      Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek
      Ateismi
      28
      1422
    4. Ootko huomannut miten

      pursuat joka puolelta. Sille joka luulee itsestään liikoja 🫵🙋🏻‍♂️
      Ikävä
      159
      1298
    5. Erika Vikman diskattiin, tilalle Gettomasa ja paluun tekevä Cheek

      Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek https://www.rumba.fi/uut
      Maailman menoa
      22
      1092
    6. Pitääkö penkeillä hypätä Martina?

      Eivätkö puistonpenkit ole istumista varten.Ei niitä kannata liata hyppäämällä koskaa likaantuvat eikä siellä kukaan niit
      Kotimaiset julkkisjuorut
      202
      1071
    7. Kuinka kauan

      Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?
      Ikävä
      92
      1028
    8. Kerropa ESA miten kävi tuomioiden

      Osaako ESA kertoa miten haukkumasi kunnanhallituksen kävi.
      Puolanka
      35
      1021
    9. Maikkarin tentti: Orpo jälleen rauhallinen ja erittäin hyvä, myös Purra oli hyvä

      Lindtman ja Kaikkonen oli kohtalaisia, sen sijaan punavihreät Koskela ja Virta olivat taas heikkoja. Ja vastustavat jalk
      Maailman menoa
      124
      969
    10. Se olisi ihan

      Napinpainalluksen päässä. Ei vaatisi paljon
      Ikävä
      62
      785
    Aihe