LYHYT MATIKKA, APUA!!!!

99erica

Tarvitsisin apua tässä lyhyen matikan tehtävässä ——>

Liisi tallettaa joka kuukauden alussa 150 euroa tilille, jonka korko on 3 % p.a. (Huomaa: p.a. eli per annum, vuodessa.) Kuinka paljon rahaa on nostettavissa viiden vuoden kuluttua?

6

332

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Noinkohan

      Voi olettaa että tallettaminen aloitetaan vuoden alussa. Korko lasketaan kai kunkin vuoden keskitalletuksille, ja ne ovat 900, 2700, 4500, 6300 ja 8100 euroa.

    • Ohman4

      Pankit laskenevat mikä mitenkin. Matemaattinen lasku on seuraava:

      Jos vuotuinen korko = p ja kuukauden alussa talletetaan summa s niin kuukauden lopussa se on kasvanut määrään s(1 p)^(1/12. Toisen kuukauden lopussa tästä on tullut s(1 p)^(2/12) ja vuoden kuluttua se on s(1 p)^(12/12)= s(1 p) eli vuotuinen korko on p.

      Joka kuukauden alussa talletetaan summa s viiden vuoden aikana eli 60 kertaa ja tilillä on
      summa S kuudennen vuoden 1. päivänä .

      S = s ( ((1 p)^(1/12)) ^60 ((1 p)^(1/12))^59 ... (1 p)^(1/12)) =

      s(1 p)^(1/12)* ( 1 (1 p)^(1/12) (1 p)^(2/12) ... (1 p)^(59/12))=

      s(1 p)^(1/12) * ((1 p)^(60/12) - 1) / ( (1 p)^(1/12) - 1). Kun s = 150 ja p = 0,03 saadaan

      S = 150*1,03^(1/12) * (1,03^5 - 1)/(1,03^(1/12) - 1) = 9711.

      Tuossa siis laskettiin geometrisen progression summa missä kahden peräkkäisen termin suhde oli (1 p)^(1/12).

    • Jaa, tuo p.a. viittaisi nollaan euroon.

    • Vielä vähän lisätietoa. En edelleenkään ota kantaa siihen, miten eri pankit todellisuudessa laskevat näitä korkoja.

      Joskus kuukausikorkona käytetään lukua p/12 kun p on vuosikorko. Tämä on yllä esittämäni koron approksimaatio. Katsotaan Taylorin sarjaa

      1 p)^(1/12) = 1 p/12 1/2! * 1/12 * (1/12 - 1) p^2 ...

      Tämän sarjan termit ovat vuorotellen positiivisia ja negatiivisia joten kun sarja katkaistaan n:nen termin jälkeen niin sen jäännöstermi on itseisarvoltann pienempi kuin sarjan (n 1):s termi ja samanmerkkinen kuin tämä.

      Joten l (1 p)^(1/12) - (1 p/12) l < 1/2 * 11/144 * p^2.

      Kun p = 0,03 tuo yläraja on 0,000034375.

      Tarkka arvo l 1,03^(1/12) - (1 0,03/12) l = l 1,00246627 - 1,0025 l = 0,00003373.

      Tuo 1 p/12 on siis tarkan arvon (1 p)^(1/12) approksimaatio.

      Laskuesimerkin tapauksessa on

      S = 150*1,0025* (1,0025^60 - 1)/(1,0025-1) = 9721.

      Tallettaja voittaisi 10 euroa tuolla tuolla approksimaatiolla laskettaessa tarkkaan arvoon verrattuna.

      • Taylorin sarja : (1 p)^(1/12) = ...

        Iski taas tuo painovirhepaholainen.


    • paperossiloota-arvio

      Ensimmäinne talletus ehtii kasvaa korkoa 60 kk. Sille korkotekijäksi tulee (1 0.03)^(1/12)^60 =1.593. Viimeinen talletus ehtii kasvaa vain kuukauden. Sen korkotekijäksi tulee 1.03^(1/12)=1.0025. Korkotekijöiden keskiarvo on 1.081. Sillä kerrotaan talletetut rahat eli 60*150*1.082 = 9729 euroa on sitten nostettavissa.

      Melko lähellä tuota "tarkkaa arvoa" 9711 e. Näin, kun korot ovat "matalalla". Muhkeammilla koroilla epätarkkuus tietysti kasvaa.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Ihanasti alkoi aamu: SDP:n kaula kokoomukseen jo 6,9 %-yks

      Lindtmanin I hallitus on tukevasti jytkyttämässä laittamaan Suomi kuntoon Orvon täystuhohallituksen jäljiltä, jonka kann
      Maailman menoa
      487
      3343
    2. Teidän persujen pitäisi välillä miettiä kuinka Suomen talous saataisiin kuntoon

      Ja lopettaa tuo tyhjänpäiväinen maahanmuuttajista höpöttäminen. Teillä on sentään rahaministerin salkku tällä kierroksel
      Maailman menoa
      153
      2375
    3. Minkä ikäinen

      Minkä ikäinen on kaipauksesi kohde?
      Ikävä
      135
      2202
    4. Persut ei kestä heidän johtajistaan tehtyä huumoria

      Laajalti tiedostettu tosiasia on, että autoritaariset johtajat ja erinäiset diktaattorit eivät kestä heidän kustannuksel
      Maailman menoa
      37
      1685
    5. Kuka omistaa entisen Veljeskodin?

      Kenellä on varaa pitää hiljattain remontoitua rakennusta tyhjillään? Tehdäänkö siitä Suomen kallein kirpputori vai mikä
      Ähtäri
      7
      1665
    6. Kaninkolojen vaikutus?

      Vinkki sinkkumiehille: jos haluatte kunnollisen täysijärkisen naisen, niin kaivautukaa ulos kaninkoloistanne ja parantak
      Sinkut
      213
      1436
    7. Martina ei mennyt naimisiin

      IS 17.9: Martinan häät peruuntui, tajusi, ettei ollut oikea aika. Rahat meni hevosiin. On edelleen parisuhteessa Yhdysva
      Kotimaiset julkkisjuorut
      181
      1434
    8. Vasemmistoliitto peruisi sosiaaliturvan heikennykset

      He palauttaisivat työttömyysturvan ja asumstuen suojaosat, eli saisi jälleen tienata 300 euroa kuukaudessa ilman tukien
      Maailman menoa
      17
      1297
    9. Kuka opettaja, mikä koulu

      Minkä koulun opettaja saanut potkut
      Nivala
      9
      1202
    10. Millaiset hiukset kaivatullasi on?

      Hiusten pituus, väri, suorat vai kiharat?
      Ikävä
      57
      1136
    Aihe