Tarvitsisin apua tässä lyhyen matikan tehtävässä ——>
Liisi tallettaa joka kuukauden alussa 150 euroa tilille, jonka korko on 3 % p.a. (Huomaa: p.a. eli per annum, vuodessa.) Kuinka paljon rahaa on nostettavissa viiden vuoden kuluttua?
LYHYT MATIKKA, APUA!!!!
6
358
Vastaukset
- Noinkohan
Voi olettaa että tallettaminen aloitetaan vuoden alussa. Korko lasketaan kai kunkin vuoden keskitalletuksille, ja ne ovat 900, 2700, 4500, 6300 ja 8100 euroa.
- Ohman4
Pankit laskenevat mikä mitenkin. Matemaattinen lasku on seuraava:
Jos vuotuinen korko = p ja kuukauden alussa talletetaan summa s niin kuukauden lopussa se on kasvanut määrään s(1 p)^(1/12. Toisen kuukauden lopussa tästä on tullut s(1 p)^(2/12) ja vuoden kuluttua se on s(1 p)^(12/12)= s(1 p) eli vuotuinen korko on p.
Joka kuukauden alussa talletetaan summa s viiden vuoden aikana eli 60 kertaa ja tilillä on
summa S kuudennen vuoden 1. päivänä .
S = s ( ((1 p)^(1/12)) ^60 ((1 p)^(1/12))^59 ... (1 p)^(1/12)) =
s(1 p)^(1/12)* ( 1 (1 p)^(1/12) (1 p)^(2/12) ... (1 p)^(59/12))=
s(1 p)^(1/12) * ((1 p)^(60/12) - 1) / ( (1 p)^(1/12) - 1). Kun s = 150 ja p = 0,03 saadaan
S = 150*1,03^(1/12) * (1,03^5 - 1)/(1,03^(1/12) - 1) = 9711.
Tuossa siis laskettiin geometrisen progression summa missä kahden peräkkäisen termin suhde oli (1 p)^(1/12). Jaa, tuo p.a. viittaisi nollaan euroon.
Vielä vähän lisätietoa. En edelleenkään ota kantaa siihen, miten eri pankit todellisuudessa laskevat näitä korkoja.
Joskus kuukausikorkona käytetään lukua p/12 kun p on vuosikorko. Tämä on yllä esittämäni koron approksimaatio. Katsotaan Taylorin sarjaa
1 p)^(1/12) = 1 p/12 1/2! * 1/12 * (1/12 - 1) p^2 ...
Tämän sarjan termit ovat vuorotellen positiivisia ja negatiivisia joten kun sarja katkaistaan n:nen termin jälkeen niin sen jäännöstermi on itseisarvoltann pienempi kuin sarjan (n 1):s termi ja samanmerkkinen kuin tämä.
Joten l (1 p)^(1/12) - (1 p/12) l < 1/2 * 11/144 * p^2.
Kun p = 0,03 tuo yläraja on 0,000034375.
Tarkka arvo l 1,03^(1/12) - (1 0,03/12) l = l 1,00246627 - 1,0025 l = 0,00003373.
Tuo 1 p/12 on siis tarkan arvon (1 p)^(1/12) approksimaatio.
Laskuesimerkin tapauksessa on
S = 150*1,0025* (1,0025^60 - 1)/(1,0025-1) = 9721.
Tallettaja voittaisi 10 euroa tuolla tuolla approksimaatiolla laskettaessa tarkkaan arvoon verrattuna.- paperossiloota-arvio
Ensimmäinne talletus ehtii kasvaa korkoa 60 kk. Sille korkotekijäksi tulee (1 0.03)^(1/12)^60 =1.593. Viimeinen talletus ehtii kasvaa vain kuukauden. Sen korkotekijäksi tulee 1.03^(1/12)=1.0025. Korkotekijöiden keskiarvo on 1.081. Sillä kerrotaan talletetut rahat eli 60*150*1.082 = 9729 euroa on sitten nostettavissa.
Melko lähellä tuota "tarkkaa arvoa" 9711 e. Näin, kun korot ovat "matalalla". Muhkeammilla koroilla epätarkkuus tietysti kasvaa.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Eduskunnan setämiehet eivät häiritse
Porvariston sedät kertoivat kuorossa, että eivät tiedä häirinnästä mitään.1716205Sanna Marinille pedataan paluuta pääministeriksi?
Näyttäisi mylly lähteneen käyntiin nyt toden teolla. Nykyiset oikeistodemarit haukutaan vasemmistodemareiden toimesta ni2123567Jaguar i pace sähköauto hajosi. Jopa 100 tonnia akun vaihto. Edullisia kilometrejä
https://www.iltalehti.fi/autouutiset/a/fcaa5ae4-c04d-414d-ac54-dab991758b2e Tuo että sähköautossa ei lämmitys toimi on183246Persut yrittävät epätoivon vimmalla
kiertää häirintä asian https://www.iltalehti.fi/politiikka/a/5389f072-60d9-4ef8-aa7b-c11f0eda66cf jonka muut puolueet a602921Muistakaa demarit, että TE petitte, ei vihreät tai vas.liitto
Te veitte eduskunnasta turvallisen tilan, veditte sen viemäristä alas. Te demarit, itsensä ylentäneet moraalinvartijat,942648Tämä on persut
Persut kannattavat koko Suomen alueiden luovuttamista Venäjälle. Kannattavat myöskin väestönvaihtoa suomalaisten ja ven22535IL: "Kyykyttämistä, alistamista, painostamista, huutamista ja tiuskimista SDP:n
eduskuntaryhmässä." Häirintäkohu puolueen ympärillä paisuu. Iltalehden haastattelemien SDP-lähteiden mukaan eduskunta-292256Riikka runnoo: konkursseja eniten 30 vuoteen
Vuonna 2025 Suomessa haettiin konkurssiin yhteensä 3 906 yritystä. Konkurssiluku oli suurin sitten vuoden 1996.251973Linta ja Pete vievät UMK:n tänä vuonna
Aika nopeasti näki kuulematta tarjonnasta ketkä homman hoitaa. Mutta etukäteen jo kiitos muille osallistujille. https:561764- 751745