LYHYT MATIKKA, APUA!!!!

99erica

Tarvitsisin apua tässä lyhyen matikan tehtävässä ——>

Liisi tallettaa joka kuukauden alussa 150 euroa tilille, jonka korko on 3 % p.a. (Huomaa: p.a. eli per annum, vuodessa.) Kuinka paljon rahaa on nostettavissa viiden vuoden kuluttua?

6

348

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Noinkohan

      Voi olettaa että tallettaminen aloitetaan vuoden alussa. Korko lasketaan kai kunkin vuoden keskitalletuksille, ja ne ovat 900, 2700, 4500, 6300 ja 8100 euroa.

    • Ohman4

      Pankit laskenevat mikä mitenkin. Matemaattinen lasku on seuraava:

      Jos vuotuinen korko = p ja kuukauden alussa talletetaan summa s niin kuukauden lopussa se on kasvanut määrään s(1 p)^(1/12. Toisen kuukauden lopussa tästä on tullut s(1 p)^(2/12) ja vuoden kuluttua se on s(1 p)^(12/12)= s(1 p) eli vuotuinen korko on p.

      Joka kuukauden alussa talletetaan summa s viiden vuoden aikana eli 60 kertaa ja tilillä on
      summa S kuudennen vuoden 1. päivänä .

      S = s ( ((1 p)^(1/12)) ^60 ((1 p)^(1/12))^59 ... (1 p)^(1/12)) =

      s(1 p)^(1/12)* ( 1 (1 p)^(1/12) (1 p)^(2/12) ... (1 p)^(59/12))=

      s(1 p)^(1/12) * ((1 p)^(60/12) - 1) / ( (1 p)^(1/12) - 1). Kun s = 150 ja p = 0,03 saadaan

      S = 150*1,03^(1/12) * (1,03^5 - 1)/(1,03^(1/12) - 1) = 9711.

      Tuossa siis laskettiin geometrisen progression summa missä kahden peräkkäisen termin suhde oli (1 p)^(1/12).

    • Jaa, tuo p.a. viittaisi nollaan euroon.

    • Vielä vähän lisätietoa. En edelleenkään ota kantaa siihen, miten eri pankit todellisuudessa laskevat näitä korkoja.

      Joskus kuukausikorkona käytetään lukua p/12 kun p on vuosikorko. Tämä on yllä esittämäni koron approksimaatio. Katsotaan Taylorin sarjaa

      1 p)^(1/12) = 1 p/12 1/2! * 1/12 * (1/12 - 1) p^2 ...

      Tämän sarjan termit ovat vuorotellen positiivisia ja negatiivisia joten kun sarja katkaistaan n:nen termin jälkeen niin sen jäännöstermi on itseisarvoltann pienempi kuin sarjan (n 1):s termi ja samanmerkkinen kuin tämä.

      Joten l (1 p)^(1/12) - (1 p/12) l < 1/2 * 11/144 * p^2.

      Kun p = 0,03 tuo yläraja on 0,000034375.

      Tarkka arvo l 1,03^(1/12) - (1 0,03/12) l = l 1,00246627 - 1,0025 l = 0,00003373.

      Tuo 1 p/12 on siis tarkan arvon (1 p)^(1/12) approksimaatio.

      Laskuesimerkin tapauksessa on

      S = 150*1,0025* (1,0025^60 - 1)/(1,0025-1) = 9721.

      Tallettaja voittaisi 10 euroa tuolla tuolla approksimaatiolla laskettaessa tarkkaan arvoon verrattuna.

      • Taylorin sarja : (1 p)^(1/12) = ...

        Iski taas tuo painovirhepaholainen.


    • paperossiloota-arvio

      Ensimmäinne talletus ehtii kasvaa korkoa 60 kk. Sille korkotekijäksi tulee (1 0.03)^(1/12)^60 =1.593. Viimeinen talletus ehtii kasvaa vain kuukauden. Sen korkotekijäksi tulee 1.03^(1/12)=1.0025. Korkotekijöiden keskiarvo on 1.081. Sillä kerrotaan talletetut rahat eli 60*150*1.082 = 9729 euroa on sitten nostettavissa.

      Melko lähellä tuota "tarkkaa arvoa" 9711 e. Näin, kun korot ovat "matalalla". Muhkeammilla koroilla epätarkkuus tietysti kasvaa.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Haluaisin rakastaa sinua

      Ja olla sinulle se oikea... Rakastan sinua 💗💗💗
      Ikävä
      39
      4289
    2. Vain vasemmistolaiset rakennemuutokset pelastavat Suomen

      Kansaa on ankeutettu viimeiset 30+ vuotta porvarillisella minäminä-talouspolitiikalla, jossa tavalliselta kansalta on ot
      Maailman menoa
      134
      4057
    3. Tiedätkö mihin

      Ominaisuuksiin rakastuin sinussa?
      Ikävä
      63
      3705
    4. onko kaivattusi

      vaarallinen? :D
      Ikävä
      87
      3551
    5. Purra on kantanut vastuuta täyden kympin arvoisesti

      Luottoluokituksen lasku, ennätysvelat ja ennätystyöttömyys siitä muutamana esimerkkinä. Jatkakoon hän hyvin aloittamaans
      Maailman menoa
      33
      3527
    6. Persut huutaa taas: "kato! muslimi!"

      Persut on lyhyessä ajassa ajaneet läpi kaksi työntekijöiden oikeuksien heikennystä, joita se on aiemmin vastustanut. Pe
      Maailman menoa
      64
      3341
    7. Pieni galluppi

      Mitäs lahjaa odotat joulupukilta.
      Ikävä
      84
      2906
    8. Olisiko sinulla

      Jonossa vaihtoehtoja, ehkä
      Ikävä
      54
      2825
    9. Mitä tuntemuksia

      Rakkaasi ääni herättää?
      Ikävä
      25
      2616
    10. Korjaamo suositus

      Vahva suositus Kumpulaisen korjaamolle vanhan 5-tien varrelta! Homma pelaa ja palvelu ykköslaatuista. Mukavaa kun tuli p
      Hyrynsalmi
      14
      2324
    Aihe