Tarvitsisin apua tässä lyhyen matikan tehtävässä ——>
Liisi tallettaa joka kuukauden alussa 150 euroa tilille, jonka korko on 3 % p.a. (Huomaa: p.a. eli per annum, vuodessa.) Kuinka paljon rahaa on nostettavissa viiden vuoden kuluttua?
LYHYT MATIKKA, APUA!!!!
6
342
Vastaukset
- Noinkohan
Voi olettaa että tallettaminen aloitetaan vuoden alussa. Korko lasketaan kai kunkin vuoden keskitalletuksille, ja ne ovat 900, 2700, 4500, 6300 ja 8100 euroa.
- Ohman4
Pankit laskenevat mikä mitenkin. Matemaattinen lasku on seuraava:
Jos vuotuinen korko = p ja kuukauden alussa talletetaan summa s niin kuukauden lopussa se on kasvanut määrään s(1 p)^(1/12. Toisen kuukauden lopussa tästä on tullut s(1 p)^(2/12) ja vuoden kuluttua se on s(1 p)^(12/12)= s(1 p) eli vuotuinen korko on p.
Joka kuukauden alussa talletetaan summa s viiden vuoden aikana eli 60 kertaa ja tilillä on
summa S kuudennen vuoden 1. päivänä .
S = s ( ((1 p)^(1/12)) ^60 ((1 p)^(1/12))^59 ... (1 p)^(1/12)) =
s(1 p)^(1/12)* ( 1 (1 p)^(1/12) (1 p)^(2/12) ... (1 p)^(59/12))=
s(1 p)^(1/12) * ((1 p)^(60/12) - 1) / ( (1 p)^(1/12) - 1). Kun s = 150 ja p = 0,03 saadaan
S = 150*1,03^(1/12) * (1,03^5 - 1)/(1,03^(1/12) - 1) = 9711.
Tuossa siis laskettiin geometrisen progression summa missä kahden peräkkäisen termin suhde oli (1 p)^(1/12). Jaa, tuo p.a. viittaisi nollaan euroon.
Vielä vähän lisätietoa. En edelleenkään ota kantaa siihen, miten eri pankit todellisuudessa laskevat näitä korkoja.
Joskus kuukausikorkona käytetään lukua p/12 kun p on vuosikorko. Tämä on yllä esittämäni koron approksimaatio. Katsotaan Taylorin sarjaa
1 p)^(1/12) = 1 p/12 1/2! * 1/12 * (1/12 - 1) p^2 ...
Tämän sarjan termit ovat vuorotellen positiivisia ja negatiivisia joten kun sarja katkaistaan n:nen termin jälkeen niin sen jäännöstermi on itseisarvoltann pienempi kuin sarjan (n 1):s termi ja samanmerkkinen kuin tämä.
Joten l (1 p)^(1/12) - (1 p/12) l < 1/2 * 11/144 * p^2.
Kun p = 0,03 tuo yläraja on 0,000034375.
Tarkka arvo l 1,03^(1/12) - (1 0,03/12) l = l 1,00246627 - 1,0025 l = 0,00003373.
Tuo 1 p/12 on siis tarkan arvon (1 p)^(1/12) approksimaatio.
Laskuesimerkin tapauksessa on
S = 150*1,0025* (1,0025^60 - 1)/(1,0025-1) = 9721.
Tallettaja voittaisi 10 euroa tuolla tuolla approksimaatiolla laskettaessa tarkkaan arvoon verrattuna.- paperossiloota-arvio
Ensimmäinne talletus ehtii kasvaa korkoa 60 kk. Sille korkotekijäksi tulee (1 0.03)^(1/12)^60 =1.593. Viimeinen talletus ehtii kasvaa vain kuukauden. Sen korkotekijäksi tulee 1.03^(1/12)=1.0025. Korkotekijöiden keskiarvo on 1.081. Sillä kerrotaan talletetut rahat eli 60*150*1.082 = 9729 euroa on sitten nostettavissa.
Melko lähellä tuota "tarkkaa arvoa" 9711 e. Näin, kun korot ovat "matalalla". Muhkeammilla koroilla epätarkkuus tietysti kasvaa.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Kansa haluaa Marinin hallituksen takaisin ja Orpon pois
Suomen kansa on nyt ilmoittanut millaisen hallituksen Suomi tarvitsee. "Suomalaisten suosikki seuraavaksi hallituspohja2155439NO NIIN! Nyt on sitten prinsessa Sannan sädekehä lopullisesti rikottu
narsistia ei kannata enää kuin ne fanaattisimmat kulttilaiset, jotka ovat myös sitä Suomen heikkoälyisintä sakkia. Kun1325024Heh, Riikka runnoi Suomen BKT:n miinukselle
Suomi on Riikan irvistysten ansiosta ainoa negatiivisen talouskasvun maa EU:ssa. Ei tästä ainakaan EU:ta voi syyttää, ku254840Mikä piirre kaivatussa on sinulle se juttu?
Tunnetko kaivattuasi vai onko hän haavekuva, jota et edes tunne? Joskus tää asia ei ole niin selvää.1232065- 4031801
HihhuIi-Päivi täpinöissään Viktorin tapaamisesta
Eiköhän nyt kaikille ole vihdoin selvää kenen joukoissa tämäkin putinisti seisoo. https://www.iltalehti.fi/politiikka/a891667Sanna vaihteeksi Australian "60 minuuttia" ohjelmassa
Kansanvälinen superstaramme esiintyi tällä kertaa toisella puolen maapalloa esitettävässä ohjelmassa. Kiinnostus on kova181615Ensitreffit Matti ei vaikene enää - Rehellinen tilitys epäonnistuneesta suhteesta Elisaan
Häntä pystyyn, Matti! Olet mahtava tyyppi ja varmasti “se oikea” löytyy vielä! Elisan kanssa ei nyt vaan sitten natsann131501Upeeta! Rauha tulee pian!
Hieno suunnitelma ja se on toteutumassa alle kahdessa viikossa. Jihuu! Tätä on odotettukin, nyt se tulee! https://www.is3791290- 901285