Ellipsi

Hammar

Montako XY-tason pistettä tarvitaan määrittämään ellipsi?

14

2122

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Zarra

      ...kolme pistettä. Keskipiste ja molempien puoliakselien päätepisteet.

      • Tavoitteeton

        Eikös kaksi pistettä riitä? Joko keskipiste ja toinen polttopiste tai molemmat polttopisteet.


      • sädf
        Tavoitteeton kirjoitti:

        Eikös kaksi pistettä riitä? Joko keskipiste ja toinen polttopiste tai molemmat polttopisteet.

        Säde jää vapaaksi, jos on vain kaksi pistettä.


      • Tavoitteeton
        sädf kirjoitti:

        Säde jää vapaaksi, jos on vain kaksi pistettä.

        No niinpäs jääkin. Eipä taas tullut ajateltua loppuun asti.


      • Hammar

        Tuli yksinkertaistettua edellistä tehtävää.
        Siis tarkoitin, kuinka monta ellipsin kehän
        pistettä tarvitaan ellipsin yhtälön muodostamiseen.
        Pisteet voi valita kehältä satunnaisesti, eivätkä
        puoliakselit ole välttämättä xy-suuntaiset.


      • jens
        Hammar kirjoitti:

        Tuli yksinkertaistettua edellistä tehtävää.
        Siis tarkoitin, kuinka monta ellipsin kehän
        pistettä tarvitaan ellipsin yhtälön muodostamiseen.
        Pisteet voi valita kehältä satunnaisesti, eivätkä
        puoliakselit ole välttämättä xy-suuntaiset.

        Missään en ole nähnyt ellipsin normaalimuotoa, mutta pienen pyörittelyn jälkeen olin saavinani keskipistemuodon tähän:

        Ax^2 By^2 Cx Dy E = 0

        Sillä perusteella viisi pistettä.

        Ethän ota tätä vakavasti?


      • afafafasf
        Hammar kirjoitti:

        Tuli yksinkertaistettua edellistä tehtävää.
        Siis tarkoitin, kuinka monta ellipsin kehän
        pistettä tarvitaan ellipsin yhtälön muodostamiseen.
        Pisteet voi valita kehältä satunnaisesti, eivätkä
        puoliakselit ole välttämättä xy-suuntaiset.

        Yleinen kartioleikkauksen yhtälö on

        Ax^2 By^2 Cxy Dx Ey F=0
        (kaikki eivät tosin ole ellipsejä)
        6 tuntematonta, joten 6 pistettä riittää, mutta
        määräkö yksikäsitteisesti en ole ihan varma?!
        luultavasti!

        4 pistettä on liian vähän, koska varmasti pystyt piirtämään ainakin kaksi eri ellipsiä niiden kautta. 5 pistettä ellipsiin, hmmm?


      • Hammar kirjoitti:

        Tuli yksinkertaistettua edellistä tehtävää.
        Siis tarkoitin, kuinka monta ellipsin kehän
        pistettä tarvitaan ellipsin yhtälön muodostamiseen.
        Pisteet voi valita kehältä satunnaisesti, eivätkä
        puoliakselit ole välttämättä xy-suuntaiset.

        Jos kolmannella kotimaisella kirjoitetun matemaattisen tekstin lukeminen ei tuota ongelmia, niin tässä on algoritmi ellipsin sovittamiseksi pistejoukkoon:

        http://autotrace.sourceforge.net/WSCG98.pdf

        En ole katsonut, miten algoritmi käyttäytyy, jos yhtälöryhmä on alimääritetty (pisteitä liian vähän). Jos se on sopivasti tehty, niin yleensä silloinkin saadaan tulos jonkin miniminormin mielessä.

        Kuukkeloimalla esimerkiksi sanoilla "fitting ellipse points", näyttää tulevan vieläkin enemmän lähteitä, mutta katsele ne itse.


      • jukepuke
        afafafasf kirjoitti:

        Yleinen kartioleikkauksen yhtälö on

        Ax^2 By^2 Cxy Dx Ey F=0
        (kaikki eivät tosin ole ellipsejä)
        6 tuntematonta, joten 6 pistettä riittää, mutta
        määräkö yksikäsitteisesti en ole ihan varma?!
        luultavasti!

        4 pistettä on liian vähän, koska varmasti pystyt piirtämään ainakin kaksi eri ellipsiä niiden kautta. 5 pistettä ellipsiin, hmmm?

        Viisi pistettä riittää määräämään yksikäsitteisen kartiokuvauksen (ja siten myös ellipsin). Kun jakaa tuon yhtälön Ax^2 By^2 Cxy Dx Ey F=0 molemmat puolet A:lla ja nimeää tuntemattomat uudelleen, niin vakioita jää enää jäljelle 5.

        Neljä pistettä ei riitä. Esim. suorakulmion kärkipisteiden kautta voi ellipsin piirtää kahteen "suuntaan".


      • jukepuke kirjoitti:

        Viisi pistettä riittää määräämään yksikäsitteisen kartiokuvauksen (ja siten myös ellipsin). Kun jakaa tuon yhtälön Ax^2 By^2 Cxy Dx Ey F=0 molemmat puolet A:lla ja nimeää tuntemattomat uudelleen, niin vakioita jää enää jäljelle 5.

        Neljä pistettä ei riitä. Esim. suorakulmion kärkipisteiden kautta voi ellipsin piirtää kahteen "suuntaan".

        Entä jos ne neljä pistettä eivät sijaitsekaan symmetrisesti minkään tason suhteen? Äkkiä ajatellen silloin neljä pistettä riittää yksikäsitteiseen ratkaisuun. Nämä neliölliset yhtälöt ovat joskus ongelmallisia symmetrian suhteen.


      • jukepuke
        Jäärä kirjoitti:

        Entä jos ne neljä pistettä eivät sijaitsekaan symmetrisesti minkään tason suhteen? Äkkiä ajatellen silloin neljä pistettä riittää yksikäsitteiseen ratkaisuun. Nämä neliölliset yhtälöt ovat joskus ongelmallisia symmetrian suhteen.

        >Entä jos ne neljä pistettä eivät sijaitsekaan
        >symmetrisesti minkään tason suhteen? Äkkiä
        >ajatellen silloin neljä pistettä riittää
        >yksikäsitteiseen ratkaisuun.

        Silloin varmaankin riittää, mutta viisi pistettä riittää varmasti AINA. Sitä kai kysyjä tässä haki takaa?


      • Jäkätijäk
        Jäärä kirjoitti:

        Jos kolmannella kotimaisella kirjoitetun matemaattisen tekstin lukeminen ei tuota ongelmia, niin tässä on algoritmi ellipsin sovittamiseksi pistejoukkoon:

        http://autotrace.sourceforge.net/WSCG98.pdf

        En ole katsonut, miten algoritmi käyttäytyy, jos yhtälöryhmä on alimääritetty (pisteitä liian vähän). Jos se on sopivasti tehty, niin yleensä silloinkin saadaan tulos jonkin miniminormin mielessä.

        Kuukkeloimalla esimerkiksi sanoilla "fitting ellipse points", näyttää tulevan vieläkin enemmän lähteitä, mutta katsele ne itse.

        ... eihän sovittaminen pistejoukkoon ole sama kuin täsmallinen määrittäminen/piirtäminen. Jos ollaan ex ante varmoja, että pisteet ovat jonkin ellipsin kehällä, toimii tuo kyllä.
        Muussa tapauksessa on olemassa vain oletus, että ellepsi olisi paras "noin"-malli kuvaamaan pistejoukon käyttäytymistä, ja haetaan pienimmällä neliösummalla parhaiten istuva.
        Sikäli tuo tsekkipoikien malli oli minulle uutta, ettei se ole iteratiivinen.


      • Jäkätijäk kirjoitti:

        ... eihän sovittaminen pistejoukkoon ole sama kuin täsmallinen määrittäminen/piirtäminen. Jos ollaan ex ante varmoja, että pisteet ovat jonkin ellipsin kehällä, toimii tuo kyllä.
        Muussa tapauksessa on olemassa vain oletus, että ellepsi olisi paras "noin"-malli kuvaamaan pistejoukon käyttäytymistä, ja haetaan pienimmällä neliösummalla parhaiten istuva.
        Sikäli tuo tsekkipoikien malli oli minulle uutta, ettei se ole iteratiivinen.

        Olen aina ollut pelkkä matematiikan soveltaja ja kauhistuttanut matemaatikkoja pelkästään ratkaisun käytännöllisyyteen pohjautuvalla suhtautumisellani. Siksi esimerkiksi tällaisissa geometrisissa ongelmissa olen suosinut mahdollisimman yleistä ratkaisua, joka soveltuu ongelmaan oli pisteiden määrä sitten mikä tahansa.

        Jos pisteitä on paljon, käytetään jotakin optimin etsintään pohjautuvaa ratkaisua, esimerkiksi pienintä neliösummaa. Jos taas pisteiden määrä mahdollistaa tällaisessa lähestymisessä analyyttisen ratkaisun, se saadaan, tai jos pisteitä on tätäkin vähemmän, saadaan jokin miniminormiratkaisu. Näin algoritmi on mahdollisimman monikäyttöinen, pisteiden lukumäärästä riippumaton ja tuottaa aina järkevän ratkaisun. Tietysti algoritmin käyttäjän pitää ymmärtää kussakin tapauksessa saatavan ratkaisun luonne, jotta tuloksen tulkinta menisi oikein.


      • Jäkätijäk
        Jäärä kirjoitti:

        Olen aina ollut pelkkä matematiikan soveltaja ja kauhistuttanut matemaatikkoja pelkästään ratkaisun käytännöllisyyteen pohjautuvalla suhtautumisellani. Siksi esimerkiksi tällaisissa geometrisissa ongelmissa olen suosinut mahdollisimman yleistä ratkaisua, joka soveltuu ongelmaan oli pisteiden määrä sitten mikä tahansa.

        Jos pisteitä on paljon, käytetään jotakin optimin etsintään pohjautuvaa ratkaisua, esimerkiksi pienintä neliösummaa. Jos taas pisteiden määrä mahdollistaa tällaisessa lähestymisessä analyyttisen ratkaisun, se saadaan, tai jos pisteitä on tätäkin vähemmän, saadaan jokin miniminormiratkaisu. Näin algoritmi on mahdollisimman monikäyttöinen, pisteiden lukumäärästä riippumaton ja tuottaa aina järkevän ratkaisun. Tietysti algoritmin käyttäjän pitää ymmärtää kussakin tapauksessa saatavan ratkaisun luonne, jotta tuloksen tulkinta menisi oikein.

        .. ei ollakaan asiasta eri mieltä, tuon viestisi viimeisen lauseen jälkeen.
        Kuitenkin analyyttinen ratkaisu ja ja tilastollinen ratkaisu - siis sovittaminen pisteparveen - ovat luonteeltaan eri asioita.


    Ketjusta on poistettu 2 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Sanna Marin teki sen, mihin muut eivät pystyneet - sote kerralla maaliin

      Yli 15 vuotta Suomessa vatvottu sote-uudistus meni lopulta läpi Sanna Marinin hallituksen aikana. Edeltävät hallitukset
      Maailman menoa
      167
      11023
    2. Marinin hallitus hyväksyi soten (105-77) vuonna 2021

      vastaan äänesti Kok, persut, KD, Liike Nyt. Nyt on sitten käynyt niin kuin on käynyt. Pääkirjoitus: Sanna Marin jätti
      Maailman menoa
      114
      6242
    3. Kannattaako suomalaisen duunarin enää äänestää vasemmistopuolueita

      sillä eivät ne tunnu kovasti ajavan suomi-duunarin etuja. Jos katsotaan Vasemmistoliittoa, niin sehän on ihan feministi
      Maailman menoa
      171
      5591
    4. Jaaha, sitä on vasemmistoryhmä käynyt häiriköimässä Purran kodin vieressä

      On näköjään iso lakana levitetty puiden väliin, jossa lukee mm. "Haista vi*** Riikka Purra". Tunkekaa leikkaukset pers..
      Maailman menoa
      86
      5511
    5. Professori: Maahanmuuttajien rikollisuutta hyssytellään - hävytöntä

      Kriminologi Jukka Savolaisen mukaan ikä ja vaikeat olosuhteet eivät riitä selitykseksi. – Tutkitun tiedon valossa sanoi
      Maailman menoa
      174
      4497
    6. Enää viisi yötä Sannan kirjaan

      Ihan täpinöissään tässä odotellaan. Vaikea pysytellä aloillaan, kun koko ajan tekisi mieli jo kirjakauppaan rynnätä, mut
      Maailman menoa
      78
      4382
    7. Mistä kummasta voi johtua se, että vasemmistolaiset usein häpeää itseään

      voiko se johtua esim. köyhyydestä? Ja tästä on siis ihan suomalainen tutkimus olemassa. "Suomalainen tutkimus osoittaa
      Maailman menoa
      50
      3997
    8. Sanna-kulttilaiset hehkuttaa edelleen Marinia, vaikka esim. Sote oli susi jo syntyessään

      mutta kulttilaiset eivät ole järjen jättiläisiä, ja sanoihin Lasse Lehtinenkin, että Suomessa on pohjoismaiden tyhmimmät
      Maailman menoa
      56
      3872
    9. Marin teki sen mihin muut eivät pystyneet, vei susi-Soten maaliin

      ja sitten hävittyjen vaalien jälkeen lähtikin vastuuta pakoon...... "Professori: sote-uudistus on täysi susi. Sosiaali
      Maailman menoa
      28
      3531
    10. IL - 100 000 potentiaalista sotilasta pakeni Ukrainasta!

      "Ukrainasta nuorten miesten joukkopako Liki 100 000 asevelvollisuusikäistä miestä on poistunut Ukrainasta parin viime k
      Maailman menoa
      87
      3127
    Aihe