Paljonko on

(-4)^1.5

8 mutta plussan vai miinuksen puolella?

22

2020

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • että 5

      pyöristyy ylöspäin niin se on plus, mutta laskimesta tullut vastaus taitaa osoittaa jotain kompleksilukua?!?

    • äjykääpiö

      (-4)^1.5 = (-4)^1*(-4)^0.5 = (-4)*2*(-1)^0.5 = -8i

    • Tavoitteeton

      (-4)^1.5
      = (-4)^(3/2)
      = sqrt((-4)^3)
      = sqrt(-64)
      = 8i tai -8i

    • negatiivisella luvulla ei voi olla rationaaliluku exponennttia laskin osaa laskea sen mutta se ei ole määritelty

      Esim.

      Jos se olisi määritelty niin.

      (-4)^(3/2)=(-4)^(6/4)

      eli

      8i = 8

      ja tuohan ei voi pitää paikkansa

      • et itse

        osaa asiaa määritellä, niin se ei tarkoita sitä, ettei sitä voitaisi määritellä. Kompleksiluvulla voi olla rationaaliluku, irrationaaliluku tai transkendenttiluku eksponenttina.


      • et itse kirjoitti:

        osaa asiaa määritellä, niin se ei tarkoita sitä, ettei sitä voitaisi määritellä. Kompleksiluvulla voi olla rationaaliluku, irrationaaliluku tai transkendenttiluku eksponenttina.

        mutta kyseessä olikin negatiivinen realiluku...


      • matematiku

        "negatiivisella luvulla ei voi olla rationaaliluku exponennttia"

        (-2)^2
        eikö muka määritelty?


      • pöljistynyt

        En tajua, mistä tuon 8 sait...

        Jos muutat -4:n polaarimuotoon:
        -4 = 4exp(i(ϖ n2ϖ)), niin tulee
        potenssilla 6/4 ja 3/2 ihan sama tulos

        4^(3/2)exp(i(3ϖ/2 n3ϖ) joka siis antaa 4^(3/2) ja -4^(3/2)

        En mene vannomaan oikeellisuutta, mutta onko tuo ongelmallinen jotenkin?


      • pöljistynyt
        pöljistynyt kirjoitti:

        En tajua, mistä tuon 8 sait...

        Jos muutat -4:n polaarimuotoon:
        -4 = 4exp(i(ϖ n2ϖ)), niin tulee
        potenssilla 6/4 ja 3/2 ihan sama tulos

        4^(3/2)exp(i(3ϖ/2 n3ϖ) joka siis antaa 4^(3/2) ja -4^(3/2)

        En mene vannomaan oikeellisuutta, mutta onko tuo ongelmallinen jotenkin?

        Tuohon edelliseen vastaukseen ne i:t vielä perään.


      • matematiku kirjoitti:

        "negatiivisella luvulla ei voi olla rationaaliluku exponennttia"

        (-2)^2
        eikö muka määritelty?

        mutta ei esimerkiksi (-4)^(1/2)

        exponentti 1/2=2/4
        eli myös

        (-4)^(1/2)=(-4)^(2/4)

        tästä saadan vastaukseksi

        2i=2

        ja tuo ei pidä paikkansa ;)


      • pöljistynyt kirjoitti:

        En tajua, mistä tuon 8 sait...

        Jos muutat -4:n polaarimuotoon:
        -4 = 4exp(i(ϖ n2ϖ)), niin tulee
        potenssilla 6/4 ja 3/2 ihan sama tulos

        4^(3/2)exp(i(3ϖ/2 n3ϖ) joka siis antaa 4^(3/2) ja -4^(3/2)

        En mene vannomaan oikeellisuutta, mutta onko tuo ongelmallinen jotenkin?

        (-4)^6=4096
        4096^(1/4)=8

        (-4)^3=-64
        (-64)^(1/2)=8i

        (-4)^(6/4)=(-4)^(3/2)

        eli 8=8i

        noista voi tulla kumpi vastaus hyvänsä ongelma on vain se että kumpi on se oikea vastaus noihin, ja miten kaksi eri suurta vastausta voi olla yhtä suuret koska vielä (-4)^(6/4)=(-4)^(3/2) tässä vaiheessa molemmat puolet ovat vielä yhtä suuria.

        Ainakin meidän matiikan ope sano ettei negatiivinen realiluku murtolukuexponentilla ole määritelty.


      • jukepuke
        filosofia kirjoitti:

        mutta ei esimerkiksi (-4)^(1/2)

        exponentti 1/2=2/4
        eli myös

        (-4)^(1/2)=(-4)^(2/4)

        tästä saadan vastaukseksi

        2i=2

        ja tuo ei pidä paikkansa ;)

        Olet aika huoleton noiden potenssilaskusääntöjen kanssa... Mikäli ajattelet lukua -4 kompleksilukuna, eli muodollisesti -4 = -4 0*i, niin potenssilaskusäännöt eivät ole samat kuin reaaliluvuilla! Toisinsanoen, kompleksiluvulle z hyvin harvoin pätee (z^a)^b = z^(ab).

        Et voi yrittää tulkita tuota lukua (-4)^(1/2) yhtäaikaa puhtaana reaalilukuna ja toisessa kohtaa kompleksilukuna. Eli jos hyväksyt kompleksiset (kompleksisen) ratkaisun, niin on käytettävä kompleksilukujen sääntöjä. Negatiivisille reaaliluvuille on määritelty ainoastaan kokonaisluku potenssit, joten ratkaisua ei tuossa tapauksessa ole määritelty. Esim. luvulle ((-4)^2)^(1/4) ratkaisu on olemassa reaalilukujen joukossa, mutta luvulle (-4)^(2/4) ei, eli sulkujen paikat noissa kahdessa ovat olennaiset!


      • Rantanplan
        filosofia kirjoitti:

        (-4)^6=4096
        4096^(1/4)=8

        (-4)^3=-64
        (-64)^(1/2)=8i

        (-4)^(6/4)=(-4)^(3/2)

        eli 8=8i

        noista voi tulla kumpi vastaus hyvänsä ongelma on vain se että kumpi on se oikea vastaus noihin, ja miten kaksi eri suurta vastausta voi olla yhtä suuret koska vielä (-4)^(6/4)=(-4)^(3/2) tässä vaiheessa molemmat puolet ovat vielä yhtä suuria.

        Ainakin meidän matiikan ope sano ettei negatiivinen realiluku murtolukuexponentilla ole määritelty.

        (-4)^6=4096
        4096^(1/4)=8

        Niin, väistämättä tulee yksikäsitteisyysongelma tuolle juuren määrittelylle, koska
        4096 = 8^4 = (-8)^4 = (8i)^4 = (-8i)^4

        Ja jos sovittaisiin, että nuo kaikki ovat tuon juuren vastauksia, niin ongelmaa tulee aina lavetaessa tuota murtopotenssia.

        Näin äkkiä tuntuisi kyllä järkevältä, että sitä ei ole määritelty, tai sitten siältää jotain sopimuksia.

        Jos jaksaisi, niin netistähän tuo virallisempikin vastaus löytyisi.


      • matematiku
        filosofia kirjoitti:

        mutta ei esimerkiksi (-4)^(1/2)

        exponentti 1/2=2/4
        eli myös

        (-4)^(1/2)=(-4)^(2/4)

        tästä saadan vastaukseksi

        2i=2

        ja tuo ei pidä paikkansa ;)

        Siis se edellisen esimerkkini kakkonenhan on rationaaliluku. Väitit ettei negatiivisia lukuja voi korottaa rationaalilukujen potenssiin.
        Murtoluvuillehan se kyllä pätee.


      • Rantanplan kirjoitti:

        (-4)^6=4096
        4096^(1/4)=8

        Niin, väistämättä tulee yksikäsitteisyysongelma tuolle juuren määrittelylle, koska
        4096 = 8^4 = (-8)^4 = (8i)^4 = (-8i)^4

        Ja jos sovittaisiin, että nuo kaikki ovat tuon juuren vastauksia, niin ongelmaa tulee aina lavetaessa tuota murtopotenssia.

        Näin äkkiä tuntuisi kyllä järkevältä, että sitä ei ole määritelty, tai sitten siältää jotain sopimuksia.

        Jos jaksaisi, niin netistähän tuo virallisempikin vastaus löytyisi.

        tuosta on jotain "sopimuksia". "ei määritelty" on ehkä liian "raaka" ilmaisu :P


      • matematiku kirjoitti:

        Siis se edellisen esimerkkini kakkonenhan on rationaaliluku. Väitit ettei negatiivisia lukuja voi korottaa rationaalilukujen potenssiin.
        Murtoluvuillehan se kyllä pätee.

        meni vähän ilmaisut sekaisin :P kun en ole matematiikkaa suomen kielellä opiskellut.


      • jukepuke kirjoitti:

        Olet aika huoleton noiden potenssilaskusääntöjen kanssa... Mikäli ajattelet lukua -4 kompleksilukuna, eli muodollisesti -4 = -4 0*i, niin potenssilaskusäännöt eivät ole samat kuin reaaliluvuilla! Toisinsanoen, kompleksiluvulle z hyvin harvoin pätee (z^a)^b = z^(ab).

        Et voi yrittää tulkita tuota lukua (-4)^(1/2) yhtäaikaa puhtaana reaalilukuna ja toisessa kohtaa kompleksilukuna. Eli jos hyväksyt kompleksiset (kompleksisen) ratkaisun, niin on käytettävä kompleksilukujen sääntöjä. Negatiivisille reaaliluvuille on määritelty ainoastaan kokonaisluku potenssit, joten ratkaisua ei tuossa tapauksessa ole määritelty. Esim. luvulle ((-4)^2)^(1/4) ratkaisu on olemassa reaalilukujen joukossa, mutta luvulle (-4)^(2/4) ei, eli sulkujen paikat noissa kahdessa ovat olennaiset!

        "Negatiivisille reaaliluvuille on määritelty ainoastaan kokonaisluku potenssit"

        Tuota "yritin" noilla esimerkeillä sanoakkin :P


    • jukepuke

      Koska
      Log(-4) = ln|-4| i*Arg(-4) = ln 4 i*Pii

      ,niin

      => (-4)^(3/2) = e^( (3/2)*Log(-4) )
      = e^(ln 8)*( cos(3*Pii/2) i*sin(3*Pii/2) )
      = -8i

      • Rantanplan

        eikös tuosta puutu se 8i ratkaisu? Jos ajattelet tuo vaikka siihen tapaan kuin Pöljistynyt, niin voit ensin ottaa sen potenssiin kolmen, ja sitten potenssin 1/2 käsittelyyn, jolloin löytyy kaksi juurta.


      • jukepuke
        Rantanplan kirjoitti:

        eikös tuosta puutu se 8i ratkaisu? Jos ajattelet tuo vaikka siihen tapaan kuin Pöljistynyt, niin voit ensin ottaa sen potenssiin kolmen, ja sitten potenssin 1/2 käsittelyyn, jolloin löytyy kaksi juurta.

        ...jos kaikki ratkaisut haetaan, niin sillon myös toinen otetaan mukaan. Yleensä kuitenkin ilmoitetaan vaan ratkaisun ns. päähaara, joka nyt tuossa tapauksessa on yllä kirjoittamani ratkaisu. Aivan kuten reaaliluvun neliöjuuri on sovittu aina positiiviseksi, jotta saataisiin aina yksikäsitteinen ratkaisu.

        Tilanne on toinen, jos halutaan tietää esim yhtälön z^2 = -1 ratkaisu. Tällöin ratkaisuja on täsmälleen se kaksi.


      • Rantanplan
        jukepuke kirjoitti:

        ...jos kaikki ratkaisut haetaan, niin sillon myös toinen otetaan mukaan. Yleensä kuitenkin ilmoitetaan vaan ratkaisun ns. päähaara, joka nyt tuossa tapauksessa on yllä kirjoittamani ratkaisu. Aivan kuten reaaliluvun neliöjuuri on sovittu aina positiiviseksi, jotta saataisiin aina yksikäsitteinen ratkaisu.

        Tilanne on toinen, jos halutaan tietää esim yhtälön z^2 = -1 ratkaisu. Tällöin ratkaisuja on täsmälleen se kaksi.

        Niin, minä en aina noista sopimusasioista niin ole selvillä.


    • xyz

      (-4)^1.5=16^0.75e^(1.5i*arg (-4))=8e^(1.5i*((-pii) 2pii n))=8 cos (-1.5 pii 3 pii n) 8i sin (-1.5 pii 3 pii n)= - 8, kun n on kokonaisluku.

      Siten molemmat vaihtoehdot, 8 tai -8 kelpaa vastaukseksi.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Riikan kukkaronnyöri on umpisolmussa

      Kulutus ei lähde liikkeelle, koska kansalaiset eivät usko, että: – työpaikka säilyy – tulot eivät romahda – talous ei h
      Maailman menoa
      3
      2681
    2. Jos vedetään mutkat suoraksi?

      Niin kumpaan ryhmään kuulut? A) Niihin, jotka menevät edellä ja tekevät? Vai B) Niihin, jotka kulkevat perässä ja ar
      Sinkut
      105
      2404
    3. Tanskan malli perustuu korkeaan ansioturvaan

      Ja vahvoihin työllisyys- ja kotoutumispalveluihin. Suomessa Riikka on leikannut juuri näitä: palkkatukea, työttömyysturv
      Maailman menoa
      4
      2209
    4. Vain vasemmistolaiset ovat aitoja suomalaisia

      Esimerkiksi persut ovat ulkomaalaisen pääomasijoittajan edunvalvojia, eivät auta köyhiä suomalaisia.
      Maailman menoa
      44
      1824
    5. Miten must tuntuu

      et sä ajattelet mua just nyt
      Ikävä
      31
      1396
    6. Anteeksipyyntöni

      Jätän tähän anteeksipyyntöni sinulle, koska en voi sanoa sitä missään muuallakaan. Pyydän anteeksi, jos purkamani tuska
      Järki ja tunteet
      14
      1343
    7. Kun et vain tajua että

      sua lähestytään feikkiprofiililla :D Hanki aivot :D m-n
      Ikävä
      176
      1125
    8. Sydämeni valtiaalle

      En täältä aio asioita kysellä. Haluan tuoda tiedoksesi, että pohjimmiltani en ihmisiä tahdo satuttaa ja ajattelen muiden
      Ikävä
      89
      1040
    9. Persu ajoi autoa

      Ajoi lapsen yli https://www.iltalehti.fi/kotimaa/a/597a7468-3d1d-455e-bed2-21c1efc31ac1
      Perussuomalaiset
      20
      1023
    10. Oletko tyytyväinen

      Tämän hetkiseen tilanteeseenne? Odotatko, että lähennytte vai yritätkö päästä yli ja eteenpäin?
      Ikävä
      79
      883
    Aihe