Paljonko on

(-4)^1.5

8 mutta plussan vai miinuksen puolella?

22

1997

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • että 5

      pyöristyy ylöspäin niin se on plus, mutta laskimesta tullut vastaus taitaa osoittaa jotain kompleksilukua?!?

    • äjykääpiö

      (-4)^1.5 = (-4)^1*(-4)^0.5 = (-4)*2*(-1)^0.5 = -8i

    • Tavoitteeton

      (-4)^1.5
      = (-4)^(3/2)
      = sqrt((-4)^3)
      = sqrt(-64)
      = 8i tai -8i

    • negatiivisella luvulla ei voi olla rationaaliluku exponennttia laskin osaa laskea sen mutta se ei ole määritelty

      Esim.

      Jos se olisi määritelty niin.

      (-4)^(3/2)=(-4)^(6/4)

      eli

      8i = 8

      ja tuohan ei voi pitää paikkansa

      • et itse

        osaa asiaa määritellä, niin se ei tarkoita sitä, ettei sitä voitaisi määritellä. Kompleksiluvulla voi olla rationaaliluku, irrationaaliluku tai transkendenttiluku eksponenttina.


      • et itse kirjoitti:

        osaa asiaa määritellä, niin se ei tarkoita sitä, ettei sitä voitaisi määritellä. Kompleksiluvulla voi olla rationaaliluku, irrationaaliluku tai transkendenttiluku eksponenttina.

        mutta kyseessä olikin negatiivinen realiluku...


      • matematiku

        "negatiivisella luvulla ei voi olla rationaaliluku exponennttia"

        (-2)^2
        eikö muka määritelty?


      • pöljistynyt

        En tajua, mistä tuon 8 sait...

        Jos muutat -4:n polaarimuotoon:
        -4 = 4exp(i(ϖ n2ϖ)), niin tulee
        potenssilla 6/4 ja 3/2 ihan sama tulos

        4^(3/2)exp(i(3ϖ/2 n3ϖ) joka siis antaa 4^(3/2) ja -4^(3/2)

        En mene vannomaan oikeellisuutta, mutta onko tuo ongelmallinen jotenkin?


      • pöljistynyt
        pöljistynyt kirjoitti:

        En tajua, mistä tuon 8 sait...

        Jos muutat -4:n polaarimuotoon:
        -4 = 4exp(i(ϖ n2ϖ)), niin tulee
        potenssilla 6/4 ja 3/2 ihan sama tulos

        4^(3/2)exp(i(3ϖ/2 n3ϖ) joka siis antaa 4^(3/2) ja -4^(3/2)

        En mene vannomaan oikeellisuutta, mutta onko tuo ongelmallinen jotenkin?

        Tuohon edelliseen vastaukseen ne i:t vielä perään.


      • matematiku kirjoitti:

        "negatiivisella luvulla ei voi olla rationaaliluku exponennttia"

        (-2)^2
        eikö muka määritelty?

        mutta ei esimerkiksi (-4)^(1/2)

        exponentti 1/2=2/4
        eli myös

        (-4)^(1/2)=(-4)^(2/4)

        tästä saadan vastaukseksi

        2i=2

        ja tuo ei pidä paikkansa ;)


      • pöljistynyt kirjoitti:

        En tajua, mistä tuon 8 sait...

        Jos muutat -4:n polaarimuotoon:
        -4 = 4exp(i(ϖ n2ϖ)), niin tulee
        potenssilla 6/4 ja 3/2 ihan sama tulos

        4^(3/2)exp(i(3ϖ/2 n3ϖ) joka siis antaa 4^(3/2) ja -4^(3/2)

        En mene vannomaan oikeellisuutta, mutta onko tuo ongelmallinen jotenkin?

        (-4)^6=4096
        4096^(1/4)=8

        (-4)^3=-64
        (-64)^(1/2)=8i

        (-4)^(6/4)=(-4)^(3/2)

        eli 8=8i

        noista voi tulla kumpi vastaus hyvänsä ongelma on vain se että kumpi on se oikea vastaus noihin, ja miten kaksi eri suurta vastausta voi olla yhtä suuret koska vielä (-4)^(6/4)=(-4)^(3/2) tässä vaiheessa molemmat puolet ovat vielä yhtä suuria.

        Ainakin meidän matiikan ope sano ettei negatiivinen realiluku murtolukuexponentilla ole määritelty.


      • jukepuke
        filosofia kirjoitti:

        mutta ei esimerkiksi (-4)^(1/2)

        exponentti 1/2=2/4
        eli myös

        (-4)^(1/2)=(-4)^(2/4)

        tästä saadan vastaukseksi

        2i=2

        ja tuo ei pidä paikkansa ;)

        Olet aika huoleton noiden potenssilaskusääntöjen kanssa... Mikäli ajattelet lukua -4 kompleksilukuna, eli muodollisesti -4 = -4 0*i, niin potenssilaskusäännöt eivät ole samat kuin reaaliluvuilla! Toisinsanoen, kompleksiluvulle z hyvin harvoin pätee (z^a)^b = z^(ab).

        Et voi yrittää tulkita tuota lukua (-4)^(1/2) yhtäaikaa puhtaana reaalilukuna ja toisessa kohtaa kompleksilukuna. Eli jos hyväksyt kompleksiset (kompleksisen) ratkaisun, niin on käytettävä kompleksilukujen sääntöjä. Negatiivisille reaaliluvuille on määritelty ainoastaan kokonaisluku potenssit, joten ratkaisua ei tuossa tapauksessa ole määritelty. Esim. luvulle ((-4)^2)^(1/4) ratkaisu on olemassa reaalilukujen joukossa, mutta luvulle (-4)^(2/4) ei, eli sulkujen paikat noissa kahdessa ovat olennaiset!


      • Rantanplan
        filosofia kirjoitti:

        (-4)^6=4096
        4096^(1/4)=8

        (-4)^3=-64
        (-64)^(1/2)=8i

        (-4)^(6/4)=(-4)^(3/2)

        eli 8=8i

        noista voi tulla kumpi vastaus hyvänsä ongelma on vain se että kumpi on se oikea vastaus noihin, ja miten kaksi eri suurta vastausta voi olla yhtä suuret koska vielä (-4)^(6/4)=(-4)^(3/2) tässä vaiheessa molemmat puolet ovat vielä yhtä suuria.

        Ainakin meidän matiikan ope sano ettei negatiivinen realiluku murtolukuexponentilla ole määritelty.

        (-4)^6=4096
        4096^(1/4)=8

        Niin, väistämättä tulee yksikäsitteisyysongelma tuolle juuren määrittelylle, koska
        4096 = 8^4 = (-8)^4 = (8i)^4 = (-8i)^4

        Ja jos sovittaisiin, että nuo kaikki ovat tuon juuren vastauksia, niin ongelmaa tulee aina lavetaessa tuota murtopotenssia.

        Näin äkkiä tuntuisi kyllä järkevältä, että sitä ei ole määritelty, tai sitten siältää jotain sopimuksia.

        Jos jaksaisi, niin netistähän tuo virallisempikin vastaus löytyisi.


      • matematiku
        filosofia kirjoitti:

        mutta ei esimerkiksi (-4)^(1/2)

        exponentti 1/2=2/4
        eli myös

        (-4)^(1/2)=(-4)^(2/4)

        tästä saadan vastaukseksi

        2i=2

        ja tuo ei pidä paikkansa ;)

        Siis se edellisen esimerkkini kakkonenhan on rationaaliluku. Väitit ettei negatiivisia lukuja voi korottaa rationaalilukujen potenssiin.
        Murtoluvuillehan se kyllä pätee.


      • Rantanplan kirjoitti:

        (-4)^6=4096
        4096^(1/4)=8

        Niin, väistämättä tulee yksikäsitteisyysongelma tuolle juuren määrittelylle, koska
        4096 = 8^4 = (-8)^4 = (8i)^4 = (-8i)^4

        Ja jos sovittaisiin, että nuo kaikki ovat tuon juuren vastauksia, niin ongelmaa tulee aina lavetaessa tuota murtopotenssia.

        Näin äkkiä tuntuisi kyllä järkevältä, että sitä ei ole määritelty, tai sitten siältää jotain sopimuksia.

        Jos jaksaisi, niin netistähän tuo virallisempikin vastaus löytyisi.

        tuosta on jotain "sopimuksia". "ei määritelty" on ehkä liian "raaka" ilmaisu :P


      • matematiku kirjoitti:

        Siis se edellisen esimerkkini kakkonenhan on rationaaliluku. Väitit ettei negatiivisia lukuja voi korottaa rationaalilukujen potenssiin.
        Murtoluvuillehan se kyllä pätee.

        meni vähän ilmaisut sekaisin :P kun en ole matematiikkaa suomen kielellä opiskellut.


      • jukepuke kirjoitti:

        Olet aika huoleton noiden potenssilaskusääntöjen kanssa... Mikäli ajattelet lukua -4 kompleksilukuna, eli muodollisesti -4 = -4 0*i, niin potenssilaskusäännöt eivät ole samat kuin reaaliluvuilla! Toisinsanoen, kompleksiluvulle z hyvin harvoin pätee (z^a)^b = z^(ab).

        Et voi yrittää tulkita tuota lukua (-4)^(1/2) yhtäaikaa puhtaana reaalilukuna ja toisessa kohtaa kompleksilukuna. Eli jos hyväksyt kompleksiset (kompleksisen) ratkaisun, niin on käytettävä kompleksilukujen sääntöjä. Negatiivisille reaaliluvuille on määritelty ainoastaan kokonaisluku potenssit, joten ratkaisua ei tuossa tapauksessa ole määritelty. Esim. luvulle ((-4)^2)^(1/4) ratkaisu on olemassa reaalilukujen joukossa, mutta luvulle (-4)^(2/4) ei, eli sulkujen paikat noissa kahdessa ovat olennaiset!

        "Negatiivisille reaaliluvuille on määritelty ainoastaan kokonaisluku potenssit"

        Tuota "yritin" noilla esimerkeillä sanoakkin :P


    • jukepuke

      Koska
      Log(-4) = ln|-4| i*Arg(-4) = ln 4 i*Pii

      ,niin

      => (-4)^(3/2) = e^( (3/2)*Log(-4) )
      = e^(ln 8)*( cos(3*Pii/2) i*sin(3*Pii/2) )
      = -8i

      • Rantanplan

        eikös tuosta puutu se 8i ratkaisu? Jos ajattelet tuo vaikka siihen tapaan kuin Pöljistynyt, niin voit ensin ottaa sen potenssiin kolmen, ja sitten potenssin 1/2 käsittelyyn, jolloin löytyy kaksi juurta.


      • jukepuke
        Rantanplan kirjoitti:

        eikös tuosta puutu se 8i ratkaisu? Jos ajattelet tuo vaikka siihen tapaan kuin Pöljistynyt, niin voit ensin ottaa sen potenssiin kolmen, ja sitten potenssin 1/2 käsittelyyn, jolloin löytyy kaksi juurta.

        ...jos kaikki ratkaisut haetaan, niin sillon myös toinen otetaan mukaan. Yleensä kuitenkin ilmoitetaan vaan ratkaisun ns. päähaara, joka nyt tuossa tapauksessa on yllä kirjoittamani ratkaisu. Aivan kuten reaaliluvun neliöjuuri on sovittu aina positiiviseksi, jotta saataisiin aina yksikäsitteinen ratkaisu.

        Tilanne on toinen, jos halutaan tietää esim yhtälön z^2 = -1 ratkaisu. Tällöin ratkaisuja on täsmälleen se kaksi.


      • Rantanplan
        jukepuke kirjoitti:

        ...jos kaikki ratkaisut haetaan, niin sillon myös toinen otetaan mukaan. Yleensä kuitenkin ilmoitetaan vaan ratkaisun ns. päähaara, joka nyt tuossa tapauksessa on yllä kirjoittamani ratkaisu. Aivan kuten reaaliluvun neliöjuuri on sovittu aina positiiviseksi, jotta saataisiin aina yksikäsitteinen ratkaisu.

        Tilanne on toinen, jos halutaan tietää esim yhtälön z^2 = -1 ratkaisu. Tällöin ratkaisuja on täsmälleen se kaksi.

        Niin, minä en aina noista sopimusasioista niin ole selvillä.


    • xyz

      (-4)^1.5=16^0.75e^(1.5i*arg (-4))=8e^(1.5i*((-pii) 2pii n))=8 cos (-1.5 pii 3 pii n) 8i sin (-1.5 pii 3 pii n)= - 8, kun n on kokonaisluku.

      Siten molemmat vaihtoehdot, 8 tai -8 kelpaa vastaukseksi.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Kaipaatko sinä

      Yhtään meidän katseita
      Ikävä
      172
      2111
    2. Törkeä eläinsuojelurikos Sonkajärvellä

      Pohjois-Savossa Sonkajärvellä noin 40 kissaa ja reilut 10 koiraa on jouduttu lopettamaan kaltoinkohtelun vuoksi, kertoo
      Sonkajärvi
      37
      1475
    3. Jotkut ihmiset pelkäävät syöpää sairastavaa

      On hauskaa, kun kertoo jollekin, että "minulla on syöpä". Jotkut käyttäytyvät kuin se olisi tarttuva tauti. Eivät uskall
      Sinkut
      132
      1164
    4. Se ei ihan oikeasti vaatisi kuin yhden

      Tekstiviestin... Jos rakastat minua vielä toivoisin että laittaisit minulle viestiä. Rakastatko? Oletko oikeasti niin pe
      Ikävä
      56
      922
    5. olisit voinut mies edes

      Pyytää anteeksi 🙏🫶
      Ikävä
      55
      856
    6. Lavrov suivaantui Stubbille perustellusti.

      Lavrov perusteli suivaantumistaan tosiasioilla Suomen tarinasta sotiemme jälkeen, tutkija Tynkkynen ja pankkihenkilö Sol
      Maailman menoa
      252
      825
    7. Kääminsä polttanut taksi suomussalmella

      Vieläkö sillä hermonsa menettäneellä hulluja ylinopeuksia ajavalla asiakkaansa haukkuvalla( jos ajat paska kyydin hänen
      Suomussalmi
      20
      792
    8. Jorma Uotinen avaa sanaisen arkkunsa TTK-miesparista ja koko uudistuksesta: "Sehän on..."

      Tanssii Tähtien Kanssa -parketilla nähdään ensimmäistä kertaa Suomessa tanssiparina miespari kauden alusta asti. Mikko S
      Tanssii tähtien kanssa
      18
      735
    9. Aina ku nään sun kuvan

      Tekis mieli kirjoittaa viesti: Moi kulta, on ikävä❣️🤗 ihan noin vain, lyhyt ja ytimekäs 😁🤭
      Ikävä
      58
      723
    10. Sukupuolia on vain kaksi- kohukassista tuli kova tuomio perheenisälle oikeudessa.

      https://www.iltalehti.fi/kotimaa/a/4d4db0d9-4dda-4ba6-a699-25d725683ad6 Miten näin normaalista kassissa olevasta tekstis
      Maailman menoa
      200
      668
    Aihe