apuva

Ei Osaa...

Nyt olisi pieni ongelma purtavana... On päässyt taidot ruostumaan...

Käyrä: x = cos t y = sin t ja z = t.

Pitäisi laskea tangentti ja normaalitaso pisteessä (0, 1, pii/2).

Tangentin suuntavektorihan saadaan ihan parametrimuodosta derivoimalla, mutta mitäs kun tangentti pitäisi ratkaista tuossa pisteessä...

Kaikki apu kelpaisi nyt!

10

722

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Tangentti tietyssä pisteessä on tietysti tuo derivaatta, johon on sijoitettu pisteen parametreille se t:n arvo, joka vastaa kyseistä pistettä. Tässä tapauksessa jo pelkällä otsalla näkee, että t = pii/2. Yleensä vielä tangentti normeerataan yksikkötangentiksi eli vektoriksi, jonka pituus on yksi.

      Normaalitaso taas on se taso, jonka yksikkönormaali on käyrän yksikkötangentti ja joka kulkee annetun pisteen kautta eli

      n.r - n.r0 = 0,

      missä n on tason yksikkönormaali, r paikkavektori ja r0 käyrän piste, jossa normaalitaso sijaitsee.

      • Janatuinen

        ... tapauksessa tuo parametrisoitu muoto johtaa helppoon ratkaisuun, kuten sinulla.
        Olen kuitenkin mietiskellyt, että parametrisointi on aika yleisesti turhaa. Mikä lienee muiden sormituntuma?


      • Janatuinen kirjoitti:

        ... tapauksessa tuo parametrisoitu muoto johtaa helppoon ratkaisuun, kuten sinulla.
        Olen kuitenkin mietiskellyt, että parametrisointi on aika yleisesti turhaa. Mikä lienee muiden sormituntuma?

        Jos geometrisilla olioilla haluaa mallintaa jotakin, parametroidut käyrät ja pinnat ovat ainoa valinta. Yritäpä laittaa ellipsi vaikka vain tasossa asentoon, jossa pääakselit eivät yhdy koordinaattisuuntiin, niin saat melkoisen yhtälön. Parametroituna teet vain ellipsin koordinaateille kiertomuunnoksen, mikä onnistuu helposti.

        Pinnoilla asia on vieläkin selvempi. Eivät nykymallinnusohjelmistot turhaan NURBS-käyriä viljele.

        Tietysti myönnän, että parameroitujen olioiden kohdalla käänteismuunnos, so. on laskettava parametrien arvo tietyssä koordinaattipisteessä, on hankala ja vie yleenä numeeristen menetelmien käyttöön. Mutta muut jutut ovatkin sitten helpompia.


      • jens

        Mietin vain antamaasi yhtälöä.

        n.r - n.r0 = 0

        Eikö vasen puoli nähdä triviaalisti nollaksi? Ensimmäinen termi on kohtisuorien vektoreiden pistetulo ja toisessa on nollavektorin pistetulo.


      • jens kirjoitti:

        Mietin vain antamaasi yhtälöä.

        n.r - n.r0 = 0

        Eikö vasen puoli nähdä triviaalisti nollaksi? Ensimmäinen termi on kohtisuorien vektoreiden pistetulo ja toisessa on nollavektorin pistetulo.

        Mitenkä olet oikein ymmärtänyt yhtälön? Otetaanpa yhtälö vähän tarkempaan tarkasteluun:

        n.r -n.r0 = 0

        missä n on tason yksikkönormaali, r paikkavektori ja r0 se käyrän piste, johon taso sijoittuu ja jossa käyrän tangentti n on määritetty, eli

        (nx,ny,nz).(x,y,z)-(nx,ny,nz).(x0,y0,z0) = 0,

        jonka vasen puoli on mielestäni aina nollasta poikkeava, mikäli n ei ole nollavektori.

        Tuon n:nkään ei tarvitse välttämättä olla normalistettu, mutta yksikkönormaalia käytettäessä osalauseke n.r0 kertoo samalla tason minimietäisyyden origosta. Tietysti yhtälö toimii myös 2D-avaruudessa, jolloin on kyseessä suoran yhtälö.


      • rtjrjrt
        Jäärä kirjoitti:

        Mitenkä olet oikein ymmärtänyt yhtälön? Otetaanpa yhtälö vähän tarkempaan tarkasteluun:

        n.r -n.r0 = 0

        missä n on tason yksikkönormaali, r paikkavektori ja r0 se käyrän piste, johon taso sijoittuu ja jossa käyrän tangentti n on määritetty, eli

        (nx,ny,nz).(x,y,z)-(nx,ny,nz).(x0,y0,z0) = 0,

        jonka vasen puoli on mielestäni aina nollasta poikkeava, mikäli n ei ole nollavektori.

        Tuon n:nkään ei tarvitse välttämättä olla normalistettu, mutta yksikkönormaalia käytettäessä osalauseke n.r0 kertoo samalla tason minimietäisyyden origosta. Tietysti yhtälö toimii myös 2D-avaruudessa, jolloin on kyseessä suoran yhtälö.

        Mutta mielestäni yksinkertaisempi esitys asialle on:

        (Normaalitason yhtälö pisteessä r0)

        (r - r0).n = 0


        eli vektorin r - r0 täytyy olla kohtisuorassa normaalivektoria n vasten (pistetulo nolla). r on siis normaalitason piste [x,y,z].

        Yhtälösihän oli sama mutta aukikirjoitettuna.


      • jens
        Jäärä kirjoitti:

        Mitenkä olet oikein ymmärtänyt yhtälön? Otetaanpa yhtälö vähän tarkempaan tarkasteluun:

        n.r -n.r0 = 0

        missä n on tason yksikkönormaali, r paikkavektori ja r0 se käyrän piste, johon taso sijoittuu ja jossa käyrän tangentti n on määritetty, eli

        (nx,ny,nz).(x,y,z)-(nx,ny,nz).(x0,y0,z0) = 0,

        jonka vasen puoli on mielestäni aina nollasta poikkeava, mikäli n ei ole nollavektori.

        Tuon n:nkään ei tarvitse välttämättä olla normalistettu, mutta yksikkönormaalia käytettäessä osalauseke n.r0 kertoo samalla tason minimietäisyyden origosta. Tietysti yhtälö toimii myös 2D-avaruudessa, jolloin on kyseessä suoran yhtälö.

        Näin ymmärsin.
        Jos r on tason paikkavektori ja n on tason normaalivektori, vektorit ovat kohtisuorat, jolloin n.r = 0 ja jos r0 on piste eli nollavektori, n.r0 = 0.

        (nx,ny,nz).(x,y,z)-(nx,ny,nz).(x0,y0,z0) = 0

        Kaipaisin myös tähän yhtälöön selvennystä. Vastaavatko x,y ja z xyz-koordinaatiston yksikkövektoreita?


      • jens
        rtjrjrt kirjoitti:

        Mutta mielestäni yksinkertaisempi esitys asialle on:

        (Normaalitason yhtälö pisteessä r0)

        (r - r0).n = 0


        eli vektorin r - r0 täytyy olla kohtisuorassa normaalivektoria n vasten (pistetulo nolla). r on siis normaalitason piste [x,y,z].

        Yhtälösihän oli sama mutta aukikirjoitettuna.

        Tässäpä oli asia selkeästi ilmaistuna.


      • jens
        jens kirjoitti:

        Näin ymmärsin.
        Jos r on tason paikkavektori ja n on tason normaalivektori, vektorit ovat kohtisuorat, jolloin n.r = 0 ja jos r0 on piste eli nollavektori, n.r0 = 0.

        (nx,ny,nz).(x,y,z)-(nx,ny,nz).(x0,y0,z0) = 0

        Kaipaisin myös tähän yhtälöön selvennystä. Vastaavatko x,y ja z xyz-koordinaatiston yksikkövektoreita?

        Ei pidä olettaa että r on kohtisuorassa n:n kanssa. Anteeksi, väsynyt.


      • Janatuinen
        Jäärä kirjoitti:

        Jos geometrisilla olioilla haluaa mallintaa jotakin, parametroidut käyrät ja pinnat ovat ainoa valinta. Yritäpä laittaa ellipsi vaikka vain tasossa asentoon, jossa pääakselit eivät yhdy koordinaattisuuntiin, niin saat melkoisen yhtälön. Parametroituna teet vain ellipsin koordinaateille kiertomuunnoksen, mikä onnistuu helposti.

        Pinnoilla asia on vieläkin selvempi. Eivät nykymallinnusohjelmistot turhaan NURBS-käyriä viljele.

        Tietysti myönnän, että parameroitujen olioiden kohdalla käänteismuunnos, so. on laskettava parametrien arvo tietyssä koordinaattipisteessä, on hankala ja vie yleenä numeeristen menetelmien käyttöön. Mutta muut jutut ovatkin sitten helpompia.

        .. ollakaan eri mieltä. Omat kokemukseni sattuvat liittymään nimenomaan arvojen laskemiseen koordinaattipisteissä käytännöllisissä sovellutuksissa.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Ajattelen sinua nyt

      Ajattelen sinua hyvin todennäköisesti myös huomenna. Sitten voi mennä viikko, että ajattelen sinua vain iltaisin ja aamu
      Ikävä
      56
      4237
    2. Vaistoan ettei sulla kaikki hyvin

      Odotatko että se loppuu kokonaan ja avaat vasta linjan. Niin monen asian pitäisi muuttua että menisi loppu elämä kivasti
      Ikävä
      18
      2801
    3. Ei se mene ohi ajan kanssa

      Näin se vaan on.
      Ikävä
      140
      2613
    4. Yritys Kannus

      Mää vaan ihmettelen, julkijuopottelua. Eikö tosiaan oo parempaa hommaa, koittas saada oikeasti jotain aikaiseksi. Hävett
      Kannus
      15
      2073
    5. Mies kadonnut

      Kukas siellä kolarissa on kadonnut
      Kolari
      15
      1523
    6. Oletko täällä mies?

      Mitä mietit? ❤️ varmistan vielä, että onhan kaikki ok meidän välillä?
      Ikävä
      109
      1400
    7. Olen huolissani

      Että joku päivä ihastut/rakastut siskooni. Ja itseasiassa haluaisin, ettei hän olisi mitenkään sinun tyyppiäsi ja pitäis
      Ikävä
      73
      1367
    8. Syrjintäskandaali Lieksan kaupungin johdossa

      Ylen valpas toimittaja kirjoittaa: Lieksan kaupunki kieltäytyi hyväksymästä Vihreiden venäläistaustaista ehdokasta Lieks
      Lieksa
      158
      1098
    9. Eikö ole jo ihan sama luovuttaa

      Meidän suhde ei ikinä toimisi.
      Ikävä
      93
      1057
    10. Kuin sonnilauma

      Taas on Virkatiellä kova meteli keskellä päivää. Ei siinä kyllä toisia asukkaita yhtään ajatella. Tullaan yhden asuntoon
      Kuhmo
      21
      1028
    Aihe