Integrointi on yksinkertaistettuna derivaatan käänteistoimitus. Eli jos tunnettaan derivaatta f'(x), niin integroinnin avulla saadaan selville funktio f(x).
Integroinnin avulla voidaan laskea myös erilaisten käyrien rajoittamia pinta-aloja(ja myös tilavuuksia). Tätä ominaisuutta koskee varsinainen kysymyksenikin, eli miten voidaan osoittaa integroimisen ja pinta-alan määrittämisen välinen yhteys?
Integrointi ja pinta-alat
5
785
Vastaukset
- epäfuksi
Lukaisepa kurssi Differentiaali- ja integraalilaskenta I. 2, http://www.math.helsinki.fi/kurssit/difint12/2001/
Lauseessa 9.3 todistetaan yhteys pinta-alan ja integraalifunktion välille. Toisaalta 5.11 kertoo, miten määrättyjä integraaleja lasketaan. Nyt integraalifunktion määritelmä on se, että F on f:n integraalifunktio jos D F(x)=f(x) kaikilla x. - JustuS67
Integraali voidaan ymmärtää kyllä ilman koko derivaatan käsitettäkin, tätä on selvitetty ainakin täällä http://www.math.jyu.fi/~terok/opetus/analyysi2/analyysi2.pdf
- jukepuke
Harmi, että varsinkin lukiossa sivuutetaan monesti tuo integraalin "oikea" tarkoitus. Riemannilainen integraali saadaan arvioimalla funktion käyrää porrasfunktiolla, jonka pinta-ala on helppo laskea. Nyt kun tämän porrasfunktion jakoa tihennetään, eli tehdään palkeista kapeampia, niin ne täyttävät pinta-alan paremmin ja saadaan parempi aproksimaatio kyseisesta alasta. Integraali saadaan antamalla näiden palkkien paksuuden mennä nollaan, eli raja-arvona.
Lukiossa integraali monesti määritellään derivaatan käänteisoperaatioksi, mikä on itseasiassa aika kovan luokan tulos. Tämän vuoksi lukiolaisille jää hämärän peittoon, että miksi se pinta-ala tulee juuri derivaatan käänteisoperaationa, mitä ei ainakaan minun mielestä ihan otsallaan näe.
Kannattaa etsiä netistä Riemann integraalista tietoa vaikka googlella. Toivottavasti valaisi jonkin verran tämä suht epäselvä ja lyhyt vastaus :). Kysymyksessä on analyysin peruslauseen lemma.
A(x) = a∫x f(t)dt
on ei-negatiivisen käyrän alle jäävä ala välillä [a,x] missä a vakio.
A'(x) = (A[x h] - A[x])/h kun h->0
ja toisaalta A(x h) - A(x) = f(x)*h kun h->0
=> A'(x) = f(x)
tämä tarkoittaa että A(x) on f:n integraalifunktio.- Myöhäinen lintu
Unohtakaa kaikki Riemannit, portaat ja muut. Peruskysymys kuuluu: Miksi integraalifunktion muutos on sama kuin sen derivaatan kuvaajan ja x-akselin välisen pinta-alan muutos.
Lähtökohtaisesti uskomme, että derivaatta kuvaa funktion muuttumiskulmaa tietyssä käyrän kohdassa eli on sen tangentti. Tällöin sen arvo on dy/dx ja nimenomaan tuon dy:n pitäisi olla sama kuin po. pinta-alan muutos.
No, derivaatan arvohan, eli sen etäisyys x-akselista sillä kohdalla on sama kuin tuo dy/dx, eli se on laskettavan alan korkeus. Alan leveys taas on dx. Siten pinta-ala on leveys kertaa korkeus eli dx kertaa dy/dx = dy, mikä siis on sama kuin integraalifunktion lisäys tuolla välillä. Voidaan siis todeta, että integraalifunktion arvo muuttuu yhtä paljon kuin sen derivaatan ja x-akselin välinen pinta-ala. Tämän perusteella on helppo uskoa, että sen arvo seuraa uskollisesti tätä pinta-alaa, oli muutos mikä tahansa.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 753597
- 622694
- 812627
Hei........
Pelkkä sun näkeminen saa mut hymyilemään pitkin iltaa. Oot niin 🤩😘 Edellinen poistettiin.582418Mitä sanoa pituudeksi näillä mittaustuloksilla?
Jos jossain tarttee ilmoittaa pituus sentin tarkkuudella? Mitattu neljästi virallisesti ja mittaustulokset on olleet 1912337Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis
Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu2492146- 431922
- 441759
Mä en jaksa suojella sua enää
Oot osa mun tarinaa ja ensirakkaus 🩷🌈 Olisiko niin kauheata, jos muutkin ystävämme tietäisivät? Se on jo niin vanha ”t151491EU:n uusin idea - jatkossa joudut tunnistautumaan kun katsot PORNOA!
"Pornon katsominen muuttuu täysin Euroopan komissio on kehittänyt sovelluksen, jolla internetin käyttäjä voi todistaa p1491408