Mahdoton tehtävä

Luuseri

HEI

Nyt on aika vetää naru kaulaan. Saatiin tällainen tehtävä.

Laske differenttiaalielementtiä ja integraalia hyväksikäyttäen.

A) Ympyrän pinta-ala
B) Kartion tilavuus
C) Pallon tilavuus
D) Pallon pinta-ala

ps. Miksei tehtävässä ole yhtään luku-arvoa, voiko tehtävän ratkaista pelkillä kaavoilla.

KIITOS

5

1142

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • antti

      esim a-kohdassa mieti ympyrän puolikasta jonka säde on r ja jonka keskipiste on origossa. sen yhtälö on
      x^2 y^2=r^2 y=sqrt(r^2-x^2)
      integroit sen -r:stä r:ään. tuloksen pitäisi olla 1/2*Pi*r^2 => koko ympyrän pinta-ala = Pi*r^2

      b-kohdassa: kartio on jonkun suoran y=kx b pyörähdyskappale. MAOLista näkee miten pyörähdyskappaleen tilavuus lasketaan.

      c-kohta: sama yhtälö kuin a:ssa mutta lasketaan pyörähdyskappaleen tilavuus.

      d-kohta: taas sama yhtälö kuin a-kohdassa. pyörähdyskappaleen vaipan alan yhtälö on MAOLissa (sivu 46).

    • TKK

      Helpointa käyttää pinta- ja tilavuusintegraaleja, mutta olettaen, että olet lukiossa kannattaa tehdä niinkuin edellä on neuvottu. D-kohta on hieman haasteellisempi, näin äkkiseltään ajatellen, koska siinä pitää huomioida kaarenpituus elementti ds.

      • TKK

        Pieni ajatuskatkos tapahtui äsken. Siis ds:stä ei tarvitse välittää, kun huomioi f'(x)=dy/dx, sillä tässähän on huomioitu jo ds. MAOL-kaava s46 kaava 35 ja siitä se D-kohta lähtee aika lyhyt lasku, kun otat f(x)=y ja ratkaiset y:n ympyrän yhtälöstä.


    • seuraaja

      Tehtävänä on kai osoittaa, kuinka maolin kaavat on muodostettu, joten valmiiden kaavojen käyttö ei vastaa tehtävän asettelua.
      Helpoimmin integrointi onnistuu, kun ratkaiset ensimmäisen ja viimeisen napakoordinaatistossa, ja kahteen muuhun riittää näistä saadut kaavat apuvälineiksi.

      • Lapset, lapset, ei tällaisten tehtävien ratkaisuun todellakaan mitään MAOLeja tarvita. Yksinkertainen periaatekuva piirtämällä ja sen differentiaaligeometriaa käyttämällä tehtävät ratkeavat helposti:

        Kun tuon a-kohdan ongelmaa tarkastellaan napakoordinaatistossa, niin differentiaalialkio dA = r dfi dr, missä r on säde, dfi differentiaalinen kulma ja dr r:n suuntainen differentiaalinen mitta. Nyt kun dA integroidaan r:n suhteen nollasta R:ään ja fi:n suhteen nollasta kahteen piihin, niin saadaan luonnollisesti A = pi R^2.

        Vastaavasti b-kohdassa tilannetta tarkastellaan sylinterikoordinaatistossa ja siten, että H:n korkuisen ja pohjan säteeltään R:n suuruisen kartion kärki on origossa. Tällöin saadaan tilavuusalkiokiekoksi dV = pi r^2 dh, missä dh on z-akselin suuntainen differentiaalinen mitta. Toisaalta r kasvaa nollasta R:ään, kun h kasvaa nollasta H:hon eli r = R h/H. Kun tämä sijoitetaan dV:hen, niin dV = pi R^2 h^2 dh/H^2. Tämä on helppo integroida nollasta H:hon ja saada tietysti V = pi R^2 H/3.

        C-kohta on vähän mutkikkaampi, mutta jälleen sopiva koordinaatiston valinta tekee asioista helpompia. Tarkastellaan nyt tilannetta pallokoordinaatistossa, jossa koordinaatit ovat r, fi ja theta. Nyt differentiaaligeometrisesta kuvasta nähdään helposti, että kuutio dV = r sin(theta) dfi r dtheta dr. Kun nyt dV integroidaan fi nollasta kahteen piihin, theta nollasta piihin ja r nollasta R:ään, niin saadaan V = 4 pi R^3/3.

        D-kohdassa kannattaa taas käyttää pallokoordinaatistoa, jossa differentiaalisen renkaan ala dA = 2 pi (R sin(theta)) R dtheta, joka integroidaan taas thetan suhteen nollasta kahteen piihin. Näin A = 4 pi R^2.

        Kannattaa aina piirtää tilanteesta kuva, johon sitten merkitsee eri differentiaaliset suureet, niin tehtävä helpottuu merkittävästi. Jos ei vielä tätä osaa, niin on syytä kiireesti opetella.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Suomen kansa haluaa Antti Lindtmanista pääministerin

      Lindtman on miltei tuplasti suositumpi kuin etunimikaimansa Kaikkonen. Näin kertoo porvarimedian teettämä kysely. http
      Maailman menoa
      294
      4781
    2. Vain 21% kannattaa Lindtmania pääministeriksi

      se on selvästi vähemmän kuin puolueen kannatus, mites nyt noin?
      Maailman menoa
      135
      3066
    3. Miksei Björn Wahlroos jaa rahaa köyhille?

      Esimerkiksi Nordean tiloissa? Vai tuovatko ne köyhät hiekkaa marmorilattioille ja siksi ei pysty mursunviiksi pystyyn k
      Maailman menoa
      52
      2983
    4. Jouluksi miettimistä: kuka tai mikä valmistaa rahan?

      Nyt kun on ollut vääntöä rahasta ja eritoten sen vähyydestä, niin olisi syytä uida rahan alkulähteille, eli mistä se syn
      Maailman menoa
      28
      1541
    5. Julkinen sektori on elänyt aivan liian leveästi yli varojensa!

      Viimeisen 15 vuoden aikana julkisen puolen palkat ovat nousseet n. 40%, kun taas yksitysellä sektorilla vain n. 20%. En
      Maailman menoa
      227
      1242
    6. Missä kunnassa kaivattusi asuu

      Kuinka tarkkaa uskalla sanoa?
      Ikävä
      47
      1189
    7. Yksikään persu ei ole saanut Nobelin palkintoa

      Kertoo paljon persujen älyn puutteesta. Demareista mm. Ahtisaari on kyseisen palkinnon saanut.
      Maailman menoa
      7
      1016
    8. Miten antaa merkki hyvin eri ikäiselle miehelle, että kertoisi toiveensa ja ajatuksensa?

      Olen pitkään pitänyt miehestä, joka myös varmasti minusta. Hän ei tosin kerro ihastumisesta, eli voi hyvin olla, että tu
      Ikävä
      78
      991
    9. Emme koskaan keskustelleet kasvotusten syistä välirikollemme

      Enkä voisi kertoa perimmäistä rehellistä syytä. Kerroin sinulle pintapuolisen ”paketin” ja otin tavallaan omalle vastuu
      Ikävä
      58
      981
    10. Paskalaista valokuitulakiin

      Nyt maksajiksi joutuvat kaupunkilaiset eivätkä mökkiensä ulkohuusseissa kakistelevat mummot. Nimittäin EU määrää jokais
      Maailman menoa
      52
      979
    Aihe