käänteisfunktion määrittelyjoukko

jffh

Mikä on käänteisfunktion määrittelyjoukko, kun käänteisfunktion lauseke on sqrt3(1-y)?

15

330

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • nimimerkki.kolmas

      Jos käänteisfunktio on
      f(y) = sqrt3(1-y) = sqrt3 - sqrt3*y,
      niin tämän määrittelyjoukko on (-ääretön, ääretön).

    • Ohman

      Vai tarkoititko että lauseke on sqrt(3 - 3y). Tämä on määritelty kun

      - inf < x <= 1.

      Ohman

      • Ohman

        Piti kirjoittamani kun - inf < y <= 1

        Ohman


      • näinpäniin

        siis lauseke on kolmasneliöjuuri (1-y)


      • nimimerkki.kolmas

        Selitätkö vielä, mikä on kolmasneliöjuuri?


      • hahahahaha
        nimimerkki.kolmas kirjoitti:

        Selitätkö vielä, mikä on kolmasneliöjuuri?

        kolmasjuuri siis;D


      • noniinn

        näin: ∛1-y


      • eipilkunviilausta
        nimimerkki.kolmas kirjoitti:

        Selitätkö vielä, mikä on kolmasneliöjuuri?

        eiköhän kaikki ymmärrä mitä aloittaja tarkoitti...


      • nimimerkki.kolmas

        Jaaha. Matematiikassa voi harrastaa pilkunviilausta. Tuo on uutta minulle.


    • Ohman

      Selostusten jälkeen oletan että funktiosi on x = (1 - y)^(1/3). Tämä on reaalifunktiona määritelty kun y < = 1.

      Ohman

      • Noinkohan

        Jos y=9, on juurrettava -8 jonka kuutiojuuri on -2.


      • Ohman

        Taas nimimerkki "Noinkohan" inttää!. Ei tuo funktio ole reaalifunktiona määritelty alueessa y > 1. Kompleksifunktiona kylläkin. Ei se, että joissain yksittäisissä pisteissä voidaan laskea tuon lausekkeen arvo tarkoita, että funktio olisi määritelty tuolla alueella. Ihan turha kommentti!

        Ohman


      • Noinkohan

        Wikipedia: "Juurifunktion määrittelyjoukkona voi joskus olla kaikki reaaliluvut, mutta yleensä vaaditaan ei-negatiivisuutta eli x>0 laskettavuuden parantamiseksi. Jos juuren aste n on parillinen, on määrittelyjoukko rajoitettu x>0 , mutta parittomalla asteella käyvät kaikki reaaliluvut."

        Kyllä kaikille negatiivisille luvuille löytyy reaalinen kuutiojuuri. Eri asia että löytyy myös kompleksiratkaisuja.


      • Ohman

        No sanoin väärin tuon "yksittäisissä pisteissä", kyllähän se arvo x^(1/3) voidaan laskea jokaisessa pisteessä x, myös silloin kun x < 0.Jos x> 0 niin (-x)^(1/3) =
        - x^(1/3) sillä (- x^(1/3)) ^3 = (-1)^3 * (x^(1/3))^3 = - x.

        Toisaalta (- x)^(1/3) = (-1)^(1/3) * x^(1/3).

        Mutta (-1) ^(1/3) = e^(i pi/3) = 1/2 i sqrt(3)/2 .Tämä on vain yksi potenssifunktion haara,haaroja kaikkian kolme: (-1)^(1/3) = e^(i (pi/3 2 k pi)/3) missä k = 0 ,1 tai 2)

        Kun nyt wikipediaan viittasit niin käypä sijoittamassa WolframAlphaan lauseke x = (1 - y)^(1/3). WA kyllä sanoo kohdassa "properties as a real function" että määritysalue (domain) on alue y <= 1.

        Reaalialueella "yleinen potenssi" x^y on x:n jatkuva funktio kun x > 0 ja määritelty myös kun y on irrationaalinen.

        Reaalialueella yleinen eksponenttifunktio a^x määritellään kun a>0, tällöin se on yksikäsitteinen ja jatkuva. Sillä on derivaatta d/dx(a^x) = a^x ln a. Tämä ei ole määritelty jos hyväksytän a <0. Vaikka jos hyväksyt että (- 8 )^(1/3) = - 2 niin kai sitten log(-8,-2) = 1/3. Siis kantaluvun -8 mukainen luvun -2 logaritmi olisi 1/3. Eikös nyt olla aika kaukana reaalialueen tavanomaisesta matematiikasta?

        Pitäisi myös määritellä mitä tarkoitttaa x^y kun x < 0 ja y on irrationaalinen. Mikä arvo on luvulla (-3)^pi? No (-1)^pi * 3^pi eli on määriteltävä mitä on (-1)^pi.Koska pi on irrationaaliluku niin z^pi on äärettömän monikäsitteinen funktio jonka haarat vaihtuvat toisiinsa kun z kiertää origon ympäri.

        Veisi nyt vähän turhan "syville vesille" ruveta tässä pohtimaan kaikkia syitä miksi "yleensä" reaalialueella määritellään tuo x^y vain kun x > 0 tai a^x vain kun a > 0

        Minä ainakin käytän edelleenkin kirjalisuudesta "yleensä" löytyviä määritelmiä.

        Ohman


      • Ohman
        Ohman kirjoitti:

        No sanoin väärin tuon "yksittäisissä pisteissä", kyllähän se arvo x^(1/3) voidaan laskea jokaisessa pisteessä x, myös silloin kun x < 0.Jos x> 0 niin (-x)^(1/3) =
        - x^(1/3) sillä (- x^(1/3)) ^3 = (-1)^3 * (x^(1/3))^3 = - x.

        Toisaalta (- x)^(1/3) = (-1)^(1/3) * x^(1/3).

        Mutta (-1) ^(1/3) = e^(i pi/3) = 1/2 i sqrt(3)/2 .Tämä on vain yksi potenssifunktion haara,haaroja kaikkian kolme: (-1)^(1/3) = e^(i (pi/3 2 k pi)/3) missä k = 0 ,1 tai 2)

        Kun nyt wikipediaan viittasit niin käypä sijoittamassa WolframAlphaan lauseke x = (1 - y)^(1/3). WA kyllä sanoo kohdassa "properties as a real function" että määritysalue (domain) on alue y <= 1.

        Reaalialueella "yleinen potenssi" x^y on x:n jatkuva funktio kun x > 0 ja määritelty myös kun y on irrationaalinen.

        Reaalialueella yleinen eksponenttifunktio a^x määritellään kun a>0, tällöin se on yksikäsitteinen ja jatkuva. Sillä on derivaatta d/dx(a^x) = a^x ln a. Tämä ei ole määritelty jos hyväksytän a <0. Vaikka jos hyväksyt että (- 8 )^(1/3) = - 2 niin kai sitten log(-8,-2) = 1/3. Siis kantaluvun -8 mukainen luvun -2 logaritmi olisi 1/3. Eikös nyt olla aika kaukana reaalialueen tavanomaisesta matematiikasta?

        Pitäisi myös määritellä mitä tarkoitttaa x^y kun x < 0 ja y on irrationaalinen. Mikä arvo on luvulla (-3)^pi? No (-1)^pi * 3^pi eli on määriteltävä mitä on (-1)^pi.Koska pi on irrationaaliluku niin z^pi on äärettömän monikäsitteinen funktio jonka haarat vaihtuvat toisiinsa kun z kiertää origon ympäri.

        Veisi nyt vähän turhan "syville vesille" ruveta tässä pohtimaan kaikkia syitä miksi "yleensä" reaalialueella määritellään tuo x^y vain kun x > 0 tai a^x vain kun a > 0

        Minä ainakin käytän edelleenkin kirjalisuudesta "yleensä" löytyviä määritelmiä.

        Ohman

        Itse asiassa monet modernit oppikirjat määrittelevät reaalialueella ensin funktiot e^x ja ln(x) ja sitten määritellään

        a^x = e^(x ln(a)) kun a > 0.

        Tästähän sitten tuo derivaatta, jonka mainitsin, on laskettavissa ja se on a^x * ln(a).

        Ohman


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Jos yhdistät nimikirjaimet

      Jos yhdistät sinun ja kaivattusi ensimmäisten nimien alkukirjaimet mitkä nimikirjaimet tulee? Sinun ensin ja sitten häne
      Ikävä
      111
      7245
    2. Mies vinkkinä sulle

      Jos pyytäisit kahville tai ihan mihin vaan, niin lähtisin varmasti välittämättä muista
      Ikävä
      62
      5149
    3. Oletko katkera kun

      Et saanut kaivattuasi
      Ikävä
      95
      4834
    4. Paljon niitä puheita

      susta liikkuu. 🤮
      Tunteet
      52
      3985
    5. Kyllä se taitaa olla nyt näin

      Minusta tuntuu et joku lyö nyt kapuloita rattaisiin että meidän välit menisi lopullisesti. Sinä halusit että tämä menee
      Ikävä
      49
      3946
    6. Mitä haluat sanoa tällä hetkellä

      Hänelle 🫶 ⬇️
      Ikävä
      217
      3837
    7. Odotan että sanot

      Sitten siinä että haluaisit vielä jutella kahdestaan kanssani ja sitten kerrot hellästi että sinulla on ollut vaikea san
      Ikävä
      28
      3518
    8. Haluun sua niin paljon

      ❤️🥰🥹 Miehelle
      Ikävä
      41
      3143
    9. Vietetään yö yhdessä

      Rakastellaan koko yö
      Ikävä
      51
      2791
    10. Mitä palveluita mies..

      Haluaisit tilata minulta? -N
      Ikävä
      41
      2367
    Aihe