Mikä on käänteisfunktion määrittelyjoukko, kun käänteisfunktion lauseke on sqrt3(1-y)?
käänteisfunktion määrittelyjoukko
15
379
Vastaukset
- nimimerkki.kolmas
Jos käänteisfunktio on
f(y) = sqrt3(1-y) = sqrt3 - sqrt3*y,
niin tämän määrittelyjoukko on (-ääretön, ääretön). - Ohman
Vai tarkoititko että lauseke on sqrt(3 - 3y). Tämä on määritelty kun
- inf < x <= 1.
Ohman- Ohman
Piti kirjoittamani kun - inf < y <= 1
Ohman - näinpäniin
siis lauseke on kolmasneliöjuuri (1-y)
- nimimerkki.kolmas
Selitätkö vielä, mikä on kolmasneliöjuuri?
- hahahahaha
nimimerkki.kolmas kirjoitti:
Selitätkö vielä, mikä on kolmasneliöjuuri?
kolmasjuuri siis;D
- noniinn
näin: ∛1-y
- eipilkunviilausta
nimimerkki.kolmas kirjoitti:
Selitätkö vielä, mikä on kolmasneliöjuuri?
eiköhän kaikki ymmärrä mitä aloittaja tarkoitti...
- nimimerkki.kolmas
Jaaha. Matematiikassa voi harrastaa pilkunviilausta. Tuo on uutta minulle.
- Ohman
Selostusten jälkeen oletan että funktiosi on x = (1 - y)^(1/3). Tämä on reaalifunktiona määritelty kun y < = 1.
Ohman- Noinkohan
Jos y=9, on juurrettava -8 jonka kuutiojuuri on -2.
- Ohman
Taas nimimerkki "Noinkohan" inttää!. Ei tuo funktio ole reaalifunktiona määritelty alueessa y > 1. Kompleksifunktiona kylläkin. Ei se, että joissain yksittäisissä pisteissä voidaan laskea tuon lausekkeen arvo tarkoita, että funktio olisi määritelty tuolla alueella. Ihan turha kommentti!
Ohman - Noinkohan
Wikipedia: "Juurifunktion määrittelyjoukkona voi joskus olla kaikki reaaliluvut, mutta yleensä vaaditaan ei-negatiivisuutta eli x>0 laskettavuuden parantamiseksi. Jos juuren aste n on parillinen, on määrittelyjoukko rajoitettu x>0 , mutta parittomalla asteella käyvät kaikki reaaliluvut."
Kyllä kaikille negatiivisille luvuille löytyy reaalinen kuutiojuuri. Eri asia että löytyy myös kompleksiratkaisuja. - Ohman
No sanoin väärin tuon "yksittäisissä pisteissä", kyllähän se arvo x^(1/3) voidaan laskea jokaisessa pisteessä x, myös silloin kun x < 0.Jos x> 0 niin (-x)^(1/3) =
- x^(1/3) sillä (- x^(1/3)) ^3 = (-1)^3 * (x^(1/3))^3 = - x.
Toisaalta (- x)^(1/3) = (-1)^(1/3) * x^(1/3).
Mutta (-1) ^(1/3) = e^(i pi/3) = 1/2 i sqrt(3)/2 .Tämä on vain yksi potenssifunktion haara,haaroja kaikkian kolme: (-1)^(1/3) = e^(i (pi/3 2 k pi)/3) missä k = 0 ,1 tai 2)
Kun nyt wikipediaan viittasit niin käypä sijoittamassa WolframAlphaan lauseke x = (1 - y)^(1/3). WA kyllä sanoo kohdassa "properties as a real function" että määritysalue (domain) on alue y <= 1.
Reaalialueella "yleinen potenssi" x^y on x:n jatkuva funktio kun x > 0 ja määritelty myös kun y on irrationaalinen.
Reaalialueella yleinen eksponenttifunktio a^x määritellään kun a>0, tällöin se on yksikäsitteinen ja jatkuva. Sillä on derivaatta d/dx(a^x) = a^x ln a. Tämä ei ole määritelty jos hyväksytän a <0. Vaikka jos hyväksyt että (- 8 )^(1/3) = - 2 niin kai sitten log(-8,-2) = 1/3. Siis kantaluvun -8 mukainen luvun -2 logaritmi olisi 1/3. Eikös nyt olla aika kaukana reaalialueen tavanomaisesta matematiikasta?
Pitäisi myös määritellä mitä tarkoitttaa x^y kun x < 0 ja y on irrationaalinen. Mikä arvo on luvulla (-3)^pi? No (-1)^pi * 3^pi eli on määriteltävä mitä on (-1)^pi.Koska pi on irrationaaliluku niin z^pi on äärettömän monikäsitteinen funktio jonka haarat vaihtuvat toisiinsa kun z kiertää origon ympäri.
Veisi nyt vähän turhan "syville vesille" ruveta tässä pohtimaan kaikkia syitä miksi "yleensä" reaalialueella määritellään tuo x^y vain kun x > 0 tai a^x vain kun a > 0
Minä ainakin käytän edelleenkin kirjalisuudesta "yleensä" löytyviä määritelmiä.
Ohman - Ohman
Ohman kirjoitti:
No sanoin väärin tuon "yksittäisissä pisteissä", kyllähän se arvo x^(1/3) voidaan laskea jokaisessa pisteessä x, myös silloin kun x < 0.Jos x> 0 niin (-x)^(1/3) =
- x^(1/3) sillä (- x^(1/3)) ^3 = (-1)^3 * (x^(1/3))^3 = - x.
Toisaalta (- x)^(1/3) = (-1)^(1/3) * x^(1/3).
Mutta (-1) ^(1/3) = e^(i pi/3) = 1/2 i sqrt(3)/2 .Tämä on vain yksi potenssifunktion haara,haaroja kaikkian kolme: (-1)^(1/3) = e^(i (pi/3 2 k pi)/3) missä k = 0 ,1 tai 2)
Kun nyt wikipediaan viittasit niin käypä sijoittamassa WolframAlphaan lauseke x = (1 - y)^(1/3). WA kyllä sanoo kohdassa "properties as a real function" että määritysalue (domain) on alue y <= 1.
Reaalialueella "yleinen potenssi" x^y on x:n jatkuva funktio kun x > 0 ja määritelty myös kun y on irrationaalinen.
Reaalialueella yleinen eksponenttifunktio a^x määritellään kun a>0, tällöin se on yksikäsitteinen ja jatkuva. Sillä on derivaatta d/dx(a^x) = a^x ln a. Tämä ei ole määritelty jos hyväksytän a <0. Vaikka jos hyväksyt että (- 8 )^(1/3) = - 2 niin kai sitten log(-8,-2) = 1/3. Siis kantaluvun -8 mukainen luvun -2 logaritmi olisi 1/3. Eikös nyt olla aika kaukana reaalialueen tavanomaisesta matematiikasta?
Pitäisi myös määritellä mitä tarkoitttaa x^y kun x < 0 ja y on irrationaalinen. Mikä arvo on luvulla (-3)^pi? No (-1)^pi * 3^pi eli on määriteltävä mitä on (-1)^pi.Koska pi on irrationaaliluku niin z^pi on äärettömän monikäsitteinen funktio jonka haarat vaihtuvat toisiinsa kun z kiertää origon ympäri.
Veisi nyt vähän turhan "syville vesille" ruveta tässä pohtimaan kaikkia syitä miksi "yleensä" reaalialueella määritellään tuo x^y vain kun x > 0 tai a^x vain kun a > 0
Minä ainakin käytän edelleenkin kirjalisuudesta "yleensä" löytyviä määritelmiä.
OhmanItse asiassa monet modernit oppikirjat määrittelevät reaalialueella ensin funktiot e^x ja ln(x) ja sitten määritellään
a^x = e^(x ln(a)) kun a > 0.
Tästähän sitten tuo derivaatta, jonka mainitsin, on laskettavissa ja se on a^x * ln(a).
Ohman
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Hallitus pyrkii rajoittamaan kaupan omien halpamerkkien myyntiä
Helsingin Sanomien mukaan hallitus valmistelee lakihanketta, joka suitsii kaupan valtaa ja rajoittaa omien halpamerkkien2343503- 623112
Björn Wahlroos, maataloustuet lakkautettava
Sanoo pankkimies. Mitäs persut ja muut tukinulliem perskärpäset tähän? "Wahlroos listaa kansallisen maataloustuen. – I672686Persut päättivät hiilivoiman kieltämisestä Suomessa
Moni on jo unohanut kuka hyväksyi hiilivoimaloiden kieltämisen Suomessa: persut Sukupuolineutraalit liikennemerkitk362566Työvoimatoimisto
Nyt kysyisin miksi pitää käydä työvoimatoimistossa paikanpäällä, kun he eivät muuta tee kuin laittavat koneelle uudet ve852155Muistattekos kuinka kokoomus ja persut vinkuivat sähkön hinnasta?
Oppositiossa vuonna 2022, kun sähkön hinta uhkasi nousta 20 senttiin kilowattitunnilta? Nyt ovat hiiren hiljaa, kun pitä851919Nalle Wahlroos ei ulise kuten Teemu Selänne sähkölaskuista
Nalle "hah hah" nauroi saamistaan sähkötuista, kun taas Teemu-poika itkeä tirautti kovasta sähkön hinnasta. Nalle nauro201897Vain persut vastustivat hiilivoimaloiden alasajoa
Persut vastusti jyrkästi hiilen kieltolakia ja on myöhemmin vaatinut hiilivoimaloiden pitämistä käytössä. He perusteliva401842Mikä aate kaiken pahan takana?
Se laiskistuttaa kansat, opettaa vaatimaan etuisuuksia, syleilee maailmoja eikä omaa kansaa.931711Mietin sua liikaa
Mietin nytkin sitä, että millaista se olisi tulla kotiin, kun sinä olisit täällä vastassa. Tai niin päin, että sinä tuli691063