Mikä on käänteisfunktion määrittelyjoukko, kun käänteisfunktion lauseke on sqrt3(1-y)?
käänteisfunktion määrittelyjoukko
15
360
Vastaukset
- nimimerkki.kolmas
Jos käänteisfunktio on
f(y) = sqrt3(1-y) = sqrt3 - sqrt3*y,
niin tämän määrittelyjoukko on (-ääretön, ääretön). - Ohman
Vai tarkoititko että lauseke on sqrt(3 - 3y). Tämä on määritelty kun
- inf < x <= 1.
Ohman- Ohman
Piti kirjoittamani kun - inf < y <= 1
Ohman - näinpäniin
siis lauseke on kolmasneliöjuuri (1-y)
- nimimerkki.kolmas
Selitätkö vielä, mikä on kolmasneliöjuuri?
- hahahahaha
nimimerkki.kolmas kirjoitti:
Selitätkö vielä, mikä on kolmasneliöjuuri?
kolmasjuuri siis;D
- noniinn
näin: ∛1-y
- eipilkunviilausta
nimimerkki.kolmas kirjoitti:
Selitätkö vielä, mikä on kolmasneliöjuuri?
eiköhän kaikki ymmärrä mitä aloittaja tarkoitti...
- nimimerkki.kolmas
Jaaha. Matematiikassa voi harrastaa pilkunviilausta. Tuo on uutta minulle.
- Ohman
Selostusten jälkeen oletan että funktiosi on x = (1 - y)^(1/3). Tämä on reaalifunktiona määritelty kun y < = 1.
Ohman- Noinkohan
Jos y=9, on juurrettava -8 jonka kuutiojuuri on -2.
- Ohman
Taas nimimerkki "Noinkohan" inttää!. Ei tuo funktio ole reaalifunktiona määritelty alueessa y > 1. Kompleksifunktiona kylläkin. Ei se, että joissain yksittäisissä pisteissä voidaan laskea tuon lausekkeen arvo tarkoita, että funktio olisi määritelty tuolla alueella. Ihan turha kommentti!
Ohman - Noinkohan
Wikipedia: "Juurifunktion määrittelyjoukkona voi joskus olla kaikki reaaliluvut, mutta yleensä vaaditaan ei-negatiivisuutta eli x>0 laskettavuuden parantamiseksi. Jos juuren aste n on parillinen, on määrittelyjoukko rajoitettu x>0 , mutta parittomalla asteella käyvät kaikki reaaliluvut."
Kyllä kaikille negatiivisille luvuille löytyy reaalinen kuutiojuuri. Eri asia että löytyy myös kompleksiratkaisuja. - Ohman
No sanoin väärin tuon "yksittäisissä pisteissä", kyllähän se arvo x^(1/3) voidaan laskea jokaisessa pisteessä x, myös silloin kun x < 0.Jos x> 0 niin (-x)^(1/3) =
- x^(1/3) sillä (- x^(1/3)) ^3 = (-1)^3 * (x^(1/3))^3 = - x.
Toisaalta (- x)^(1/3) = (-1)^(1/3) * x^(1/3).
Mutta (-1) ^(1/3) = e^(i pi/3) = 1/2 i sqrt(3)/2 .Tämä on vain yksi potenssifunktion haara,haaroja kaikkian kolme: (-1)^(1/3) = e^(i (pi/3 2 k pi)/3) missä k = 0 ,1 tai 2)
Kun nyt wikipediaan viittasit niin käypä sijoittamassa WolframAlphaan lauseke x = (1 - y)^(1/3). WA kyllä sanoo kohdassa "properties as a real function" että määritysalue (domain) on alue y <= 1.
Reaalialueella "yleinen potenssi" x^y on x:n jatkuva funktio kun x > 0 ja määritelty myös kun y on irrationaalinen.
Reaalialueella yleinen eksponenttifunktio a^x määritellään kun a>0, tällöin se on yksikäsitteinen ja jatkuva. Sillä on derivaatta d/dx(a^x) = a^x ln a. Tämä ei ole määritelty jos hyväksytän a <0. Vaikka jos hyväksyt että (- 8 )^(1/3) = - 2 niin kai sitten log(-8,-2) = 1/3. Siis kantaluvun -8 mukainen luvun -2 logaritmi olisi 1/3. Eikös nyt olla aika kaukana reaalialueen tavanomaisesta matematiikasta?
Pitäisi myös määritellä mitä tarkoitttaa x^y kun x < 0 ja y on irrationaalinen. Mikä arvo on luvulla (-3)^pi? No (-1)^pi * 3^pi eli on määriteltävä mitä on (-1)^pi.Koska pi on irrationaaliluku niin z^pi on äärettömän monikäsitteinen funktio jonka haarat vaihtuvat toisiinsa kun z kiertää origon ympäri.
Veisi nyt vähän turhan "syville vesille" ruveta tässä pohtimaan kaikkia syitä miksi "yleensä" reaalialueella määritellään tuo x^y vain kun x > 0 tai a^x vain kun a > 0
Minä ainakin käytän edelleenkin kirjalisuudesta "yleensä" löytyviä määritelmiä.
Ohman - Ohman
Ohman kirjoitti:
No sanoin väärin tuon "yksittäisissä pisteissä", kyllähän se arvo x^(1/3) voidaan laskea jokaisessa pisteessä x, myös silloin kun x < 0.Jos x> 0 niin (-x)^(1/3) =
- x^(1/3) sillä (- x^(1/3)) ^3 = (-1)^3 * (x^(1/3))^3 = - x.
Toisaalta (- x)^(1/3) = (-1)^(1/3) * x^(1/3).
Mutta (-1) ^(1/3) = e^(i pi/3) = 1/2 i sqrt(3)/2 .Tämä on vain yksi potenssifunktion haara,haaroja kaikkian kolme: (-1)^(1/3) = e^(i (pi/3 2 k pi)/3) missä k = 0 ,1 tai 2)
Kun nyt wikipediaan viittasit niin käypä sijoittamassa WolframAlphaan lauseke x = (1 - y)^(1/3). WA kyllä sanoo kohdassa "properties as a real function" että määritysalue (domain) on alue y <= 1.
Reaalialueella "yleinen potenssi" x^y on x:n jatkuva funktio kun x > 0 ja määritelty myös kun y on irrationaalinen.
Reaalialueella yleinen eksponenttifunktio a^x määritellään kun a>0, tällöin se on yksikäsitteinen ja jatkuva. Sillä on derivaatta d/dx(a^x) = a^x ln a. Tämä ei ole määritelty jos hyväksytän a <0. Vaikka jos hyväksyt että (- 8 )^(1/3) = - 2 niin kai sitten log(-8,-2) = 1/3. Siis kantaluvun -8 mukainen luvun -2 logaritmi olisi 1/3. Eikös nyt olla aika kaukana reaalialueen tavanomaisesta matematiikasta?
Pitäisi myös määritellä mitä tarkoitttaa x^y kun x < 0 ja y on irrationaalinen. Mikä arvo on luvulla (-3)^pi? No (-1)^pi * 3^pi eli on määriteltävä mitä on (-1)^pi.Koska pi on irrationaaliluku niin z^pi on äärettömän monikäsitteinen funktio jonka haarat vaihtuvat toisiinsa kun z kiertää origon ympäri.
Veisi nyt vähän turhan "syville vesille" ruveta tässä pohtimaan kaikkia syitä miksi "yleensä" reaalialueella määritellään tuo x^y vain kun x > 0 tai a^x vain kun a > 0
Minä ainakin käytän edelleenkin kirjalisuudesta "yleensä" löytyviä määritelmiä.
OhmanItse asiassa monet modernit oppikirjat määrittelevät reaalialueella ensin funktiot e^x ja ln(x) ja sitten määritellään
a^x = e^(x ln(a)) kun a > 0.
Tästähän sitten tuo derivaatta, jonka mainitsin, on laskettavissa ja se on a^x * ln(a).
Ohman
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Jalankulkija kuoli. Poliisi etsii mustaa BMW Coupe -autoa, jossa on punertavat vanteet.
Jalankulkija kuoli jäätyään auton alle Joensuussa – kuljettaja pakeni, poliisi pyytää havaintoja https://www.mtvuutiset.2555801Mikä vasemmistolaisista jankkaavaa vaivaa?
Pahasti on ihon alle, siis korvien väliin sinne tyhjään tilaan, päässeet kummittelemaan. Ei ole terveen ihmisen merkki943529PÄIVÄN PARAS: Nigerialainen haki turvapaikkaa Suomesta, lähti takas huilaamaan
kotimaahansa, koska turvapaikan saaminen kesti niin kauan. Ja tämän kertoo ihan Yle, eikä yhtään toimittaja kyseenalaist1373451Ohjelma "Rikollisjengien Ruotsi" hyvin paljasti jakautuneen maan
eli ns. ruotsalaiset yhdellä puolella, muslimit ja muut kehitysmaalaiset toisella puolella. Siinäkin hyvin näki mitä ma423083Vassarina hymyilyttää vaurastuminen persujen kustannuksella
Olen sijottanut määrätietoisesti osan Kelan tuista pörssiosakkeisiin, ja salkku on paisunut jo toiselle sadalle tuhanne843013Riikka runnoo: Elisalta potkut 400:lle
Erinomaisen hallitusohjelman tavoite 100 000 työllistä lisää yksityisellä sektorilla on kohta saavutettu. Toivotaan toiv952813Pidennetään viikko 8 päiväiseksi
Ja jätetään työpäivien määrä nykyiseen 5:een. Tuo olisi kompromissiratkaisu vellovaan keskusteluun työajan lyhentämisest172460Pääseekö kuka tahansa hoitaja katselemaan kenen tahansa ihmisen terveystietoja?
"Meeri selaili puhelinta uteliaisuuttaan ja katuu nyt – Moni hoitaja on tehnyt saman rikoksen Tuttujen ihmisten asiat k1112391- 1791993
Vapaa- ajan asunto palanut Haapavedellä
Haapavesi päässyt Iltalehteen Vapaa- ajan asunto palanut 35 neliötä palanut. Missä päin tämä on ollut? Poliisin tutkinn101525