käänteisfunktion määrittelyjoukko

jffh

Mikä on käänteisfunktion määrittelyjoukko, kun käänteisfunktion lauseke on sqrt3(1-y)?

15

325

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • nimimerkki.kolmas

      Jos käänteisfunktio on
      f(y) = sqrt3(1-y) = sqrt3 - sqrt3*y,
      niin tämän määrittelyjoukko on (-ääretön, ääretön).

    • Ohman

      Vai tarkoititko että lauseke on sqrt(3 - 3y). Tämä on määritelty kun

      - inf < x <= 1.

      Ohman

      • Ohman

        Piti kirjoittamani kun - inf < y <= 1

        Ohman


      • näinpäniin

        siis lauseke on kolmasneliöjuuri (1-y)


      • nimimerkki.kolmas

        Selitätkö vielä, mikä on kolmasneliöjuuri?


      • hahahahaha
        nimimerkki.kolmas kirjoitti:

        Selitätkö vielä, mikä on kolmasneliöjuuri?

        kolmasjuuri siis;D


      • noniinn

        näin: ∛1-y


      • eipilkunviilausta
        nimimerkki.kolmas kirjoitti:

        Selitätkö vielä, mikä on kolmasneliöjuuri?

        eiköhän kaikki ymmärrä mitä aloittaja tarkoitti...


      • nimimerkki.kolmas

        Jaaha. Matematiikassa voi harrastaa pilkunviilausta. Tuo on uutta minulle.


    • Ohman

      Selostusten jälkeen oletan että funktiosi on x = (1 - y)^(1/3). Tämä on reaalifunktiona määritelty kun y < = 1.

      Ohman

      • Noinkohan

        Jos y=9, on juurrettava -8 jonka kuutiojuuri on -2.


      • Ohman

        Taas nimimerkki "Noinkohan" inttää!. Ei tuo funktio ole reaalifunktiona määritelty alueessa y > 1. Kompleksifunktiona kylläkin. Ei se, että joissain yksittäisissä pisteissä voidaan laskea tuon lausekkeen arvo tarkoita, että funktio olisi määritelty tuolla alueella. Ihan turha kommentti!

        Ohman


      • Noinkohan

        Wikipedia: "Juurifunktion määrittelyjoukkona voi joskus olla kaikki reaaliluvut, mutta yleensä vaaditaan ei-negatiivisuutta eli x>0 laskettavuuden parantamiseksi. Jos juuren aste n on parillinen, on määrittelyjoukko rajoitettu x>0 , mutta parittomalla asteella käyvät kaikki reaaliluvut."

        Kyllä kaikille negatiivisille luvuille löytyy reaalinen kuutiojuuri. Eri asia että löytyy myös kompleksiratkaisuja.


      • Ohman

        No sanoin väärin tuon "yksittäisissä pisteissä", kyllähän se arvo x^(1/3) voidaan laskea jokaisessa pisteessä x, myös silloin kun x < 0.Jos x> 0 niin (-x)^(1/3) =
        - x^(1/3) sillä (- x^(1/3)) ^3 = (-1)^3 * (x^(1/3))^3 = - x.

        Toisaalta (- x)^(1/3) = (-1)^(1/3) * x^(1/3).

        Mutta (-1) ^(1/3) = e^(i pi/3) = 1/2 i sqrt(3)/2 .Tämä on vain yksi potenssifunktion haara,haaroja kaikkian kolme: (-1)^(1/3) = e^(i (pi/3 2 k pi)/3) missä k = 0 ,1 tai 2)

        Kun nyt wikipediaan viittasit niin käypä sijoittamassa WolframAlphaan lauseke x = (1 - y)^(1/3). WA kyllä sanoo kohdassa "properties as a real function" että määritysalue (domain) on alue y <= 1.

        Reaalialueella "yleinen potenssi" x^y on x:n jatkuva funktio kun x > 0 ja määritelty myös kun y on irrationaalinen.

        Reaalialueella yleinen eksponenttifunktio a^x määritellään kun a>0, tällöin se on yksikäsitteinen ja jatkuva. Sillä on derivaatta d/dx(a^x) = a^x ln a. Tämä ei ole määritelty jos hyväksytän a <0. Vaikka jos hyväksyt että (- 8 )^(1/3) = - 2 niin kai sitten log(-8,-2) = 1/3. Siis kantaluvun -8 mukainen luvun -2 logaritmi olisi 1/3. Eikös nyt olla aika kaukana reaalialueen tavanomaisesta matematiikasta?

        Pitäisi myös määritellä mitä tarkoitttaa x^y kun x < 0 ja y on irrationaalinen. Mikä arvo on luvulla (-3)^pi? No (-1)^pi * 3^pi eli on määriteltävä mitä on (-1)^pi.Koska pi on irrationaaliluku niin z^pi on äärettömän monikäsitteinen funktio jonka haarat vaihtuvat toisiinsa kun z kiertää origon ympäri.

        Veisi nyt vähän turhan "syville vesille" ruveta tässä pohtimaan kaikkia syitä miksi "yleensä" reaalialueella määritellään tuo x^y vain kun x > 0 tai a^x vain kun a > 0

        Minä ainakin käytän edelleenkin kirjalisuudesta "yleensä" löytyviä määritelmiä.

        Ohman


      • Ohman
        Ohman kirjoitti:

        No sanoin väärin tuon "yksittäisissä pisteissä", kyllähän se arvo x^(1/3) voidaan laskea jokaisessa pisteessä x, myös silloin kun x < 0.Jos x> 0 niin (-x)^(1/3) =
        - x^(1/3) sillä (- x^(1/3)) ^3 = (-1)^3 * (x^(1/3))^3 = - x.

        Toisaalta (- x)^(1/3) = (-1)^(1/3) * x^(1/3).

        Mutta (-1) ^(1/3) = e^(i pi/3) = 1/2 i sqrt(3)/2 .Tämä on vain yksi potenssifunktion haara,haaroja kaikkian kolme: (-1)^(1/3) = e^(i (pi/3 2 k pi)/3) missä k = 0 ,1 tai 2)

        Kun nyt wikipediaan viittasit niin käypä sijoittamassa WolframAlphaan lauseke x = (1 - y)^(1/3). WA kyllä sanoo kohdassa "properties as a real function" että määritysalue (domain) on alue y <= 1.

        Reaalialueella "yleinen potenssi" x^y on x:n jatkuva funktio kun x > 0 ja määritelty myös kun y on irrationaalinen.

        Reaalialueella yleinen eksponenttifunktio a^x määritellään kun a>0, tällöin se on yksikäsitteinen ja jatkuva. Sillä on derivaatta d/dx(a^x) = a^x ln a. Tämä ei ole määritelty jos hyväksytän a <0. Vaikka jos hyväksyt että (- 8 )^(1/3) = - 2 niin kai sitten log(-8,-2) = 1/3. Siis kantaluvun -8 mukainen luvun -2 logaritmi olisi 1/3. Eikös nyt olla aika kaukana reaalialueen tavanomaisesta matematiikasta?

        Pitäisi myös määritellä mitä tarkoitttaa x^y kun x < 0 ja y on irrationaalinen. Mikä arvo on luvulla (-3)^pi? No (-1)^pi * 3^pi eli on määriteltävä mitä on (-1)^pi.Koska pi on irrationaaliluku niin z^pi on äärettömän monikäsitteinen funktio jonka haarat vaihtuvat toisiinsa kun z kiertää origon ympäri.

        Veisi nyt vähän turhan "syville vesille" ruveta tässä pohtimaan kaikkia syitä miksi "yleensä" reaalialueella määritellään tuo x^y vain kun x > 0 tai a^x vain kun a > 0

        Minä ainakin käytän edelleenkin kirjalisuudesta "yleensä" löytyviä määritelmiä.

        Ohman

        Itse asiassa monet modernit oppikirjat määrittelevät reaalialueella ensin funktiot e^x ja ln(x) ja sitten määritellään

        a^x = e^(x ln(a)) kun a > 0.

        Tästähän sitten tuo derivaatta, jonka mainitsin, on laskettavissa ja se on a^x * ln(a).

        Ohman


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Klaukkalan onnettomuus 4.4

      Klaukkalassa oli tänään se kolmen nuoren naisen onnettomuus, onko kellään mitään tietoa mitä kävi tai ketä onnettomuudes
      Nurmijärvi
      104
      4641
    2. Yleltä tyrmäävä uutinen

      Ylen uutisen mukaan Raamattu on keksitty n. 2600. Putoaako kristinuskolta pohja kokonaan alta pois? https://yle.fi/a/74
      Luterilaisuus
      391
      1391
    3. Missä mustasusi on?

      Suden aloituksia ei ole näkynyt moneen päivään.
      Ikävä
      186
      1072
    4. Pakko kertoa mies

      Äitini tietää, että olen ihastunut sinuun. 😳 halusin että hän näkisi sinun kuvan ja pyysin googlaamaan sinua. Kommentti
      Ikävä
      109
      1062
    5. Sinä vain tulit elämääni

      Ja joku tarkoitus sillä on ollut. Näyttämään mitä olen ja kuinka arvokas voisin olla. Se muutti ja käänsi elämäni suunna
      Ikävä
      86
      970
    6. Millaisia ajatuksia on kaivatusta ja tilanteestanne tänään?

      Kerro omista mietteistäsi tai lähetä terveisiä. Ehkä hän lukee ja lähettää sinulle takaisin omia mietteitään.
      Ikävä
      47
      911
    7. Miten koskettaisit häntä?

      Miten lähestyisit jos hän olisi lähelläsi nyt..
      Ikävä
      64
      901
    8. Riitta-Liisa ja Toni Roponen: Ero! Riitta-Liisa Roponen kertoo asiasta Instagramissa.

      Riitta-Liisa ja Toni Roponen eroavat. Riitta-Liisa Roponen kertoo asiasta Instagramissa. – Talvi on ollut elämäni synk
      Maailman menoa
      11
      892
    9. tilitoimistopiirainen huutaa

      mikä tää piiraisen tilitoimistomies oikee on? olin kuullut vaikka mitä huhuja, että ihan valtavan äkkipikanen mies mutt
      Kuhmo
      10
      877
    10. Mitä ajattelet

      Kaivattusi uskosta tai onko hän uskossa?
      Ikävä
      64
      866
    Aihe