Mikä on käänteisfunktion määrittelyjoukko, kun käänteisfunktion lauseke on sqrt3(1-y)?
käänteisfunktion määrittelyjoukko
15
337
Vastaukset
- nimimerkki.kolmas
Jos käänteisfunktio on
f(y) = sqrt3(1-y) = sqrt3 - sqrt3*y,
niin tämän määrittelyjoukko on (-ääretön, ääretön). - Ohman
Vai tarkoititko että lauseke on sqrt(3 - 3y). Tämä on määritelty kun
- inf < x <= 1.
Ohman- Ohman
Piti kirjoittamani kun - inf < y <= 1
Ohman - näinpäniin
siis lauseke on kolmasneliöjuuri (1-y)
- nimimerkki.kolmas
Selitätkö vielä, mikä on kolmasneliöjuuri?
- hahahahaha
nimimerkki.kolmas kirjoitti:
Selitätkö vielä, mikä on kolmasneliöjuuri?
kolmasjuuri siis;D
- noniinn
näin: ∛1-y
- eipilkunviilausta
nimimerkki.kolmas kirjoitti:
Selitätkö vielä, mikä on kolmasneliöjuuri?
eiköhän kaikki ymmärrä mitä aloittaja tarkoitti...
- nimimerkki.kolmas
Jaaha. Matematiikassa voi harrastaa pilkunviilausta. Tuo on uutta minulle.
- Ohman
Selostusten jälkeen oletan että funktiosi on x = (1 - y)^(1/3). Tämä on reaalifunktiona määritelty kun y < = 1.
Ohman- Noinkohan
Jos y=9, on juurrettava -8 jonka kuutiojuuri on -2.
- Ohman
Taas nimimerkki "Noinkohan" inttää!. Ei tuo funktio ole reaalifunktiona määritelty alueessa y > 1. Kompleksifunktiona kylläkin. Ei se, että joissain yksittäisissä pisteissä voidaan laskea tuon lausekkeen arvo tarkoita, että funktio olisi määritelty tuolla alueella. Ihan turha kommentti!
Ohman - Noinkohan
Wikipedia: "Juurifunktion määrittelyjoukkona voi joskus olla kaikki reaaliluvut, mutta yleensä vaaditaan ei-negatiivisuutta eli x>0 laskettavuuden parantamiseksi. Jos juuren aste n on parillinen, on määrittelyjoukko rajoitettu x>0 , mutta parittomalla asteella käyvät kaikki reaaliluvut."
Kyllä kaikille negatiivisille luvuille löytyy reaalinen kuutiojuuri. Eri asia että löytyy myös kompleksiratkaisuja. - Ohman
No sanoin väärin tuon "yksittäisissä pisteissä", kyllähän se arvo x^(1/3) voidaan laskea jokaisessa pisteessä x, myös silloin kun x < 0.Jos x> 0 niin (-x)^(1/3) =
- x^(1/3) sillä (- x^(1/3)) ^3 = (-1)^3 * (x^(1/3))^3 = - x.
Toisaalta (- x)^(1/3) = (-1)^(1/3) * x^(1/3).
Mutta (-1) ^(1/3) = e^(i pi/3) = 1/2 i sqrt(3)/2 .Tämä on vain yksi potenssifunktion haara,haaroja kaikkian kolme: (-1)^(1/3) = e^(i (pi/3 2 k pi)/3) missä k = 0 ,1 tai 2)
Kun nyt wikipediaan viittasit niin käypä sijoittamassa WolframAlphaan lauseke x = (1 - y)^(1/3). WA kyllä sanoo kohdassa "properties as a real function" että määritysalue (domain) on alue y <= 1.
Reaalialueella "yleinen potenssi" x^y on x:n jatkuva funktio kun x > 0 ja määritelty myös kun y on irrationaalinen.
Reaalialueella yleinen eksponenttifunktio a^x määritellään kun a>0, tällöin se on yksikäsitteinen ja jatkuva. Sillä on derivaatta d/dx(a^x) = a^x ln a. Tämä ei ole määritelty jos hyväksytän a <0. Vaikka jos hyväksyt että (- 8 )^(1/3) = - 2 niin kai sitten log(-8,-2) = 1/3. Siis kantaluvun -8 mukainen luvun -2 logaritmi olisi 1/3. Eikös nyt olla aika kaukana reaalialueen tavanomaisesta matematiikasta?
Pitäisi myös määritellä mitä tarkoitttaa x^y kun x < 0 ja y on irrationaalinen. Mikä arvo on luvulla (-3)^pi? No (-1)^pi * 3^pi eli on määriteltävä mitä on (-1)^pi.Koska pi on irrationaaliluku niin z^pi on äärettömän monikäsitteinen funktio jonka haarat vaihtuvat toisiinsa kun z kiertää origon ympäri.
Veisi nyt vähän turhan "syville vesille" ruveta tässä pohtimaan kaikkia syitä miksi "yleensä" reaalialueella määritellään tuo x^y vain kun x > 0 tai a^x vain kun a > 0
Minä ainakin käytän edelleenkin kirjalisuudesta "yleensä" löytyviä määritelmiä.
Ohman - Ohman
Ohman kirjoitti:
No sanoin väärin tuon "yksittäisissä pisteissä", kyllähän se arvo x^(1/3) voidaan laskea jokaisessa pisteessä x, myös silloin kun x < 0.Jos x> 0 niin (-x)^(1/3) =
- x^(1/3) sillä (- x^(1/3)) ^3 = (-1)^3 * (x^(1/3))^3 = - x.
Toisaalta (- x)^(1/3) = (-1)^(1/3) * x^(1/3).
Mutta (-1) ^(1/3) = e^(i pi/3) = 1/2 i sqrt(3)/2 .Tämä on vain yksi potenssifunktion haara,haaroja kaikkian kolme: (-1)^(1/3) = e^(i (pi/3 2 k pi)/3) missä k = 0 ,1 tai 2)
Kun nyt wikipediaan viittasit niin käypä sijoittamassa WolframAlphaan lauseke x = (1 - y)^(1/3). WA kyllä sanoo kohdassa "properties as a real function" että määritysalue (domain) on alue y <= 1.
Reaalialueella "yleinen potenssi" x^y on x:n jatkuva funktio kun x > 0 ja määritelty myös kun y on irrationaalinen.
Reaalialueella yleinen eksponenttifunktio a^x määritellään kun a>0, tällöin se on yksikäsitteinen ja jatkuva. Sillä on derivaatta d/dx(a^x) = a^x ln a. Tämä ei ole määritelty jos hyväksytän a <0. Vaikka jos hyväksyt että (- 8 )^(1/3) = - 2 niin kai sitten log(-8,-2) = 1/3. Siis kantaluvun -8 mukainen luvun -2 logaritmi olisi 1/3. Eikös nyt olla aika kaukana reaalialueen tavanomaisesta matematiikasta?
Pitäisi myös määritellä mitä tarkoitttaa x^y kun x < 0 ja y on irrationaalinen. Mikä arvo on luvulla (-3)^pi? No (-1)^pi * 3^pi eli on määriteltävä mitä on (-1)^pi.Koska pi on irrationaaliluku niin z^pi on äärettömän monikäsitteinen funktio jonka haarat vaihtuvat toisiinsa kun z kiertää origon ympäri.
Veisi nyt vähän turhan "syville vesille" ruveta tässä pohtimaan kaikkia syitä miksi "yleensä" reaalialueella määritellään tuo x^y vain kun x > 0 tai a^x vain kun a > 0
Minä ainakin käytän edelleenkin kirjalisuudesta "yleensä" löytyviä määritelmiä.
OhmanItse asiassa monet modernit oppikirjat määrittelevät reaalialueella ensin funktiot e^x ja ln(x) ja sitten määritellään
a^x = e^(x ln(a)) kun a > 0.
Tästähän sitten tuo derivaatta, jonka mainitsin, on laskettavissa ja se on a^x * ln(a).
Ohman
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Hengenvaaralliset kiihdytysajot päättyivät karmealla tavalla, kilpailija kuoli
Onnettomuudesta on aloitettu selvitys. Tapahtuma keskeytettiin onnettomuuteen. Tapahtumaa tutkitaan paikan päällä yhtei1726273- 1471744
- 1131528
- 511280
Suureksi onneksesi on myönnettävä
Että olen nyt sitten mennyt rakastumaan sinuun. Ei tässä mitään, olen kärsivällinen ❤️46952Möykkähulluus vaati kuolonuhrin
Nuori elämä menettiin täysin turhaan tällä järjettömyydellä! Toivottavasti näitä ei enää koskaan nähdä Kauhavalla! 😢30870Älä mies pidä mua pettäjänä
En petä ketään. Älä mies ajattele niin. Anteeksi että ihastuin suhun varattuna. Pettänyt en ole koskaan ketään vaikka hu97856Reeniähororeeniä
Helvetillisen vaikeaa työskennellä hoitajana,kun ei kestä silmissään yhtään läskiä. Saati hoitaa sellaista. Mitä tehdä?5809Tarvitsemme lisää maahanmuuttoa.
Väestö eläköityy, eli tarvitsemme lisää tekeviä käsiä ja veronmaksajia. Ainut ratkaisu löytyy maahanmuutosta. Nimenomaan231775- 41759