Mikä on käänteisfunktion määrittelyjoukko, kun käänteisfunktion lauseke on sqrt3(1-y)?
käänteisfunktion määrittelyjoukko
15
368
Vastaukset
- nimimerkki.kolmas
Jos käänteisfunktio on
f(y) = sqrt3(1-y) = sqrt3 - sqrt3*y,
niin tämän määrittelyjoukko on (-ääretön, ääretön). - Ohman
Vai tarkoititko että lauseke on sqrt(3 - 3y). Tämä on määritelty kun
- inf < x <= 1.
Ohman- Ohman
Piti kirjoittamani kun - inf < y <= 1
Ohman - näinpäniin
siis lauseke on kolmasneliöjuuri (1-y)
- nimimerkki.kolmas
Selitätkö vielä, mikä on kolmasneliöjuuri?
- hahahahaha
nimimerkki.kolmas kirjoitti:
Selitätkö vielä, mikä on kolmasneliöjuuri?
kolmasjuuri siis;D
- noniinn
näin: ∛1-y
- eipilkunviilausta
nimimerkki.kolmas kirjoitti:
Selitätkö vielä, mikä on kolmasneliöjuuri?
eiköhän kaikki ymmärrä mitä aloittaja tarkoitti...
- nimimerkki.kolmas
Jaaha. Matematiikassa voi harrastaa pilkunviilausta. Tuo on uutta minulle.
- Ohman
Selostusten jälkeen oletan että funktiosi on x = (1 - y)^(1/3). Tämä on reaalifunktiona määritelty kun y < = 1.
Ohman- Noinkohan
Jos y=9, on juurrettava -8 jonka kuutiojuuri on -2.
- Ohman
Taas nimimerkki "Noinkohan" inttää!. Ei tuo funktio ole reaalifunktiona määritelty alueessa y > 1. Kompleksifunktiona kylläkin. Ei se, että joissain yksittäisissä pisteissä voidaan laskea tuon lausekkeen arvo tarkoita, että funktio olisi määritelty tuolla alueella. Ihan turha kommentti!
Ohman - Noinkohan
Wikipedia: "Juurifunktion määrittelyjoukkona voi joskus olla kaikki reaaliluvut, mutta yleensä vaaditaan ei-negatiivisuutta eli x>0 laskettavuuden parantamiseksi. Jos juuren aste n on parillinen, on määrittelyjoukko rajoitettu x>0 , mutta parittomalla asteella käyvät kaikki reaaliluvut."
Kyllä kaikille negatiivisille luvuille löytyy reaalinen kuutiojuuri. Eri asia että löytyy myös kompleksiratkaisuja. - Ohman
No sanoin väärin tuon "yksittäisissä pisteissä", kyllähän se arvo x^(1/3) voidaan laskea jokaisessa pisteessä x, myös silloin kun x < 0.Jos x> 0 niin (-x)^(1/3) =
- x^(1/3) sillä (- x^(1/3)) ^3 = (-1)^3 * (x^(1/3))^3 = - x.
Toisaalta (- x)^(1/3) = (-1)^(1/3) * x^(1/3).
Mutta (-1) ^(1/3) = e^(i pi/3) = 1/2 i sqrt(3)/2 .Tämä on vain yksi potenssifunktion haara,haaroja kaikkian kolme: (-1)^(1/3) = e^(i (pi/3 2 k pi)/3) missä k = 0 ,1 tai 2)
Kun nyt wikipediaan viittasit niin käypä sijoittamassa WolframAlphaan lauseke x = (1 - y)^(1/3). WA kyllä sanoo kohdassa "properties as a real function" että määritysalue (domain) on alue y <= 1.
Reaalialueella "yleinen potenssi" x^y on x:n jatkuva funktio kun x > 0 ja määritelty myös kun y on irrationaalinen.
Reaalialueella yleinen eksponenttifunktio a^x määritellään kun a>0, tällöin se on yksikäsitteinen ja jatkuva. Sillä on derivaatta d/dx(a^x) = a^x ln a. Tämä ei ole määritelty jos hyväksytän a <0. Vaikka jos hyväksyt että (- 8 )^(1/3) = - 2 niin kai sitten log(-8,-2) = 1/3. Siis kantaluvun -8 mukainen luvun -2 logaritmi olisi 1/3. Eikös nyt olla aika kaukana reaalialueen tavanomaisesta matematiikasta?
Pitäisi myös määritellä mitä tarkoitttaa x^y kun x < 0 ja y on irrationaalinen. Mikä arvo on luvulla (-3)^pi? No (-1)^pi * 3^pi eli on määriteltävä mitä on (-1)^pi.Koska pi on irrationaaliluku niin z^pi on äärettömän monikäsitteinen funktio jonka haarat vaihtuvat toisiinsa kun z kiertää origon ympäri.
Veisi nyt vähän turhan "syville vesille" ruveta tässä pohtimaan kaikkia syitä miksi "yleensä" reaalialueella määritellään tuo x^y vain kun x > 0 tai a^x vain kun a > 0
Minä ainakin käytän edelleenkin kirjalisuudesta "yleensä" löytyviä määritelmiä.
Ohman - Ohman
Ohman kirjoitti:
No sanoin väärin tuon "yksittäisissä pisteissä", kyllähän se arvo x^(1/3) voidaan laskea jokaisessa pisteessä x, myös silloin kun x < 0.Jos x> 0 niin (-x)^(1/3) =
- x^(1/3) sillä (- x^(1/3)) ^3 = (-1)^3 * (x^(1/3))^3 = - x.
Toisaalta (- x)^(1/3) = (-1)^(1/3) * x^(1/3).
Mutta (-1) ^(1/3) = e^(i pi/3) = 1/2 i sqrt(3)/2 .Tämä on vain yksi potenssifunktion haara,haaroja kaikkian kolme: (-1)^(1/3) = e^(i (pi/3 2 k pi)/3) missä k = 0 ,1 tai 2)
Kun nyt wikipediaan viittasit niin käypä sijoittamassa WolframAlphaan lauseke x = (1 - y)^(1/3). WA kyllä sanoo kohdassa "properties as a real function" että määritysalue (domain) on alue y <= 1.
Reaalialueella "yleinen potenssi" x^y on x:n jatkuva funktio kun x > 0 ja määritelty myös kun y on irrationaalinen.
Reaalialueella yleinen eksponenttifunktio a^x määritellään kun a>0, tällöin se on yksikäsitteinen ja jatkuva. Sillä on derivaatta d/dx(a^x) = a^x ln a. Tämä ei ole määritelty jos hyväksytän a <0. Vaikka jos hyväksyt että (- 8 )^(1/3) = - 2 niin kai sitten log(-8,-2) = 1/3. Siis kantaluvun -8 mukainen luvun -2 logaritmi olisi 1/3. Eikös nyt olla aika kaukana reaalialueen tavanomaisesta matematiikasta?
Pitäisi myös määritellä mitä tarkoitttaa x^y kun x < 0 ja y on irrationaalinen. Mikä arvo on luvulla (-3)^pi? No (-1)^pi * 3^pi eli on määriteltävä mitä on (-1)^pi.Koska pi on irrationaaliluku niin z^pi on äärettömän monikäsitteinen funktio jonka haarat vaihtuvat toisiinsa kun z kiertää origon ympäri.
Veisi nyt vähän turhan "syville vesille" ruveta tässä pohtimaan kaikkia syitä miksi "yleensä" reaalialueella määritellään tuo x^y vain kun x > 0 tai a^x vain kun a > 0
Minä ainakin käytän edelleenkin kirjalisuudesta "yleensä" löytyviä määritelmiä.
OhmanItse asiassa monet modernit oppikirjat määrittelevät reaalialueella ensin funktiot e^x ja ln(x) ja sitten määritellään
a^x = e^(x ln(a)) kun a > 0.
Tästähän sitten tuo derivaatta, jonka mainitsin, on laskettavissa ja se on a^x * ln(a).
Ohman
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Jens Ihlen (ex Kukka) poika todistaa oikeudessa
10:49 "Välit ovat olemattomat" Minkälainen isäsi ja sinun välinen suhde on tällä hetkellä? "Minulla ei ole minkäännäkö27810189K-kaupassa on mukava käydä, kun ei tarvitse katsella köyhiä
vasemmistolaisia, joista monet myös varastavat. Mielellään maksaa vähän enemmän tuotteista K-kaupassa, jotka ovat paljon2305888Suomeen ei kuulu ihmiset jotka ei halua kätellä toisia ihmisiä, koska tämä on vääräuskoinen
Nainen joka ei halunnut kätellä Stubbia on selvästi ääripään muslimi, eli sitä sakkia josta niitä ongelmia koituu. Ulos1735374PS:n Purra teki -JÄTTI-VELAT
* * PS:n Purra teki -JÄTTI-VELAT - ! ja jätti MaksuHuolet -Kansan Maksettavaksi -! *905003Vain vasemmistolaiset rakennemuutokset pelastavat Suomen
Kansaa on ankeutettu viimeiset 30+ vuotta porvarillisella minäminä-talouspolitiikalla, jossa tavalliselta kansalta on ot163290Persut huutaa taas: "kato! muslimi!"
Persut on lyhyessä ajassa ajaneet läpi kaksi työntekijöiden oikeuksien heikennystä, joita se on aiemmin vastustanut. Pe52662- 2142562
Nainen, sanotaan että totuus tekee kipeää
Ehkä mutta se voi olla myös se kaikkein kamalin asia kohdata. Kuplassa on turvallista, kun tietää vähemmän on helpompi.172394- 282204
Valtio lopettaa pienituloisten perheiden kylpylälomien tukemisen
Pienituloiset suomalaiset ovat voineet vuosikymmenten ajan hakea tuettuja lomia terveydellisin, sosiaalisin ja taloudell3812171