Tyhmä-kö-kysymys

matikkaonkivaa

Jos tunnetaan funktio esim. y^n y*sin(y) =x , niin onko jokin keino jolla se voidaan muuttaa muotoon y= f(x) ?

11

246

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • RobertTaylor
    • VeikkaanEttä

      Eksaktia funktiota ei taida löytyä !

      • Tuskin: Anna tehtävälle oma nimesi ja tule kuuluisaksi !


      • Tai tee sarjakehitelmä (y*sin(y)) :sta ja jää unholaan


      • Ohman

        Tässä on kyseessä se, että funktiolle x = x(y) pitäisi löytää käänteisfunktio y = y(x). Joskus tämä voi löytyä suljetussa muodossa, siis kaavana jolla y voidaan esittää x:n avulla.
        '
        Kommenteissa mainitut sarjakehitelmät eivät vielä sinänsä esimerkkisi ongelmaa ratkaise, niissähän on edelleen x lausuttuna y:n eri potenssien summana. On olemassa menetelmä nimeltä "sarjan kääntäminen" jolla voi onnistua sarjasta,jossa x on lausuttu y:n potenssien avulla , saamaan aikaan sarjan, jossa y on lausuttu x:n potenssien avulla eli saadaan funktiosta x = x(y) funktio y = y(x).

        Ohman


    • aeija

      Tuota sarjakehitelmää käyttämällä voidaan saada jotain aikaan parissa erikoistapauksessa, eli n=2 ja n=4, kun otetaan siitä sarjasta kaksi ensimmäistä termiä. Lisätermien ottaminen tekee ratkaisut mahdottomaksi, koska se y on ratkaistava siitä yhtälöstä. On ehkä mahdollista n=1, mutta en edes yritä.
      Noissa kahdessakin erikoistapauksessa x ≥ 0 ja lisäksi x:lle tulee ylärajat, joita ei ilman Wolframia saa selville.
      Laitan tähän nyt paperille jotakin: https://aijaa.com/I20o8m

    • Ei_aina

      Ei tässä tapauksessa. Funktio ei ole separoituva eikä injektiivinen, ts. sillä ei ole käänteisfunktiota kuvajoukolta alkukuvajoukolleen.

      • Entä-tämä

        Löytyykö funktiolle x = y*e^y käänteisfunktiota ?


      • laskee
        Entä-tämä kirjoitti:

        Löytyykö funktiolle x = y*e^y käänteisfunktiota ?

        Funktiolle x = y*e^y ei taida löytyä käänteisfunktiota suljetussa muodossa.


    • Ohman

      Kun x = W e^W niin ratkaisu W on Lambertin W-funktio. Välillä ( 0 <=x < inf) on yksi reaalinen ratkaisu joka on ei-negatiivinen ja kasvava. Välillä - 1/e < x < 0 on kaksi reaalista ratkaisua, toinen kasvava ja toinen vähenevä.Nämä ovat W:n päähaara Wp(x) ja toinen haara Wm(x).

      Voit piirrättää W-A:lla noiden kuvia ja nähdä miten kulkevat.Laita x =y*e^y ja inverse of x = y*e^y.

      Ohman

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Ja taas ammuttu kokkolassa

      Kokkolaisilta pitäisi kerätä pois kaikki ampumaset, keittiöveitset ja kaikki mikä vähänkään paukku ja on terävä.
      Kokkola
      30
      3441
    2. Kukka ampu taas Kokkolassa?

      T. olisi hetkeä aiemmin lähtenyt johonkin. Naapuri kai tekijä J.K., ei paljasjalkainen Kokkolalainen, vaan n. 100km pääs
      Kokkola
      8
      1484
    3. Kuinka kauan

      Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?
      Ikävä
      113
      1453
    4. Milli-helenalla ongelmia

      Suomen virkavallan kanssa. Eipä ole ihme kun on etsintäkuullutettu jenkkilässäkin. Vähiin käy oleskelupaikat virottarell
      Kotimaiset julkkisjuorut
      224
      1235
    5. Kun näen sinut

      tulen iloiseksi. Tuskin uskallan katsoa sinua, herätät minussa niin paljon tunteita. En tunne sinua hyvin, mutta jotain
      Ikävä
      34
      873
    6. Purra saksii taas. Hän on mielipuuhassaan.

      Nyt hän leikkaa hyvinvointialueiltamme kymmeniä miljoonia. Sotea romutetaan tylysti. Terveydenhoitoamme kurjistetaan. ht
      Maailman menoa
      241
      861
    7. Yhdelle miehelle

      Mä kaipaan sua niin paljon. Miksi sä oot tommonen pösilö?
      Ikävä
      60
      859
    8. Ja taas kerran hallinto-oikeus että pieleen meni

      Hallinto-oikeus kumosi kunnanhallituksen päätöksen vuokratalojen pääomituksesta. https://sysmad10.oncloudos.com/cgi/DREQ
      Sysmä
      66
      844
    9. Helena Koivu on äiti

      Mitä hyötyä on Mikko Koivulla kohdella LASTENSA äitiä huonosti . Vie lapset tutuista ympyröistä pois . Lasten kodista.
      Kotimaiset julkkisjuorut
      122
      818
    10. Löydänköhän koskaan

      Sunlaista herkkää tunteellista joka jumaloi mua. Tuskin. Siksi harmittaa että asiat meni näin 🥲
      Ikävä
      97
      798
    Aihe