Tyhmä-kö-kysymys

matikkaonkivaa

Jos tunnetaan funktio esim. y^n y*sin(y) =x , niin onko jokin keino jolla se voidaan muuttaa muotoon y= f(x) ?

11

253

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • RobertTaylor
    • VeikkaanEttä

      Eksaktia funktiota ei taida löytyä !

      • Tuskin: Anna tehtävälle oma nimesi ja tule kuuluisaksi !


      • Tai tee sarjakehitelmä (y*sin(y)) :sta ja jää unholaan


      • Ohman

        Tässä on kyseessä se, että funktiolle x = x(y) pitäisi löytää käänteisfunktio y = y(x). Joskus tämä voi löytyä suljetussa muodossa, siis kaavana jolla y voidaan esittää x:n avulla.
        '
        Kommenteissa mainitut sarjakehitelmät eivät vielä sinänsä esimerkkisi ongelmaa ratkaise, niissähän on edelleen x lausuttuna y:n eri potenssien summana. On olemassa menetelmä nimeltä "sarjan kääntäminen" jolla voi onnistua sarjasta,jossa x on lausuttu y:n potenssien avulla , saamaan aikaan sarjan, jossa y on lausuttu x:n potenssien avulla eli saadaan funktiosta x = x(y) funktio y = y(x).

        Ohman


    • aeija

      Tuota sarjakehitelmää käyttämällä voidaan saada jotain aikaan parissa erikoistapauksessa, eli n=2 ja n=4, kun otetaan siitä sarjasta kaksi ensimmäistä termiä. Lisätermien ottaminen tekee ratkaisut mahdottomaksi, koska se y on ratkaistava siitä yhtälöstä. On ehkä mahdollista n=1, mutta en edes yritä.
      Noissa kahdessakin erikoistapauksessa x ≥ 0 ja lisäksi x:lle tulee ylärajat, joita ei ilman Wolframia saa selville.
      Laitan tähän nyt paperille jotakin: https://aijaa.com/I20o8m

    • Ei_aina

      Ei tässä tapauksessa. Funktio ei ole separoituva eikä injektiivinen, ts. sillä ei ole käänteisfunktiota kuvajoukolta alkukuvajoukolleen.

      • Entä-tämä

        Löytyykö funktiolle x = y*e^y käänteisfunktiota ?


      • laskee
        Entä-tämä kirjoitti:

        Löytyykö funktiolle x = y*e^y käänteisfunktiota ?

        Funktiolle x = y*e^y ei taida löytyä käänteisfunktiota suljetussa muodossa.


    • Ohman

      Kun x = W e^W niin ratkaisu W on Lambertin W-funktio. Välillä ( 0 <=x < inf) on yksi reaalinen ratkaisu joka on ei-negatiivinen ja kasvava. Välillä - 1/e < x < 0 on kaksi reaalista ratkaisua, toinen kasvava ja toinen vähenevä.Nämä ovat W:n päähaara Wp(x) ja toinen haara Wm(x).

      Voit piirrättää W-A:lla noiden kuvia ja nähdä miten kulkevat.Laita x =y*e^y ja inverse of x = y*e^y.

      Ohman

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Laitetaas nyt kirjaimet tänne

      kuka kaipaa ja ketä ?
      Ikävä
      88
      7227
    2. Pieni häivähdys sinusta

      Olet niin totinen
      Ikävä
      35
      3373
    3. Lähetä terveisesi kaipaamallesi henkilölle

      Vauva-palstalta tuttua kaipaamista uudessa ympäristössä. Kaipuu jatkukoon 💘
      Ikävä
      102
      1816
    4. Missä olet ollut tänään kaivattuni?

      Ikävä sai yliotteen ❤️ En nähnyt sua tänään söpö mies
      Ikävä
      21
      892
    5. Valtimon Haapajärvellä paatti mäni nurin

      Ikävä onnettomuus Haapajärvellä. Vene hörpppi vettä matkalla saaren. Veneessä ol 5 henkilöä, kolme uiskenteli rantaan,
      Nurmes
      27
      891
    6. Taas ryssittiin oikein kunnolla

      r….ä hyökkäsi Viroon sikaili taas ajattelematta yhtään mitään https://www.is.fi/ulkomaat/art-2000011347289.html
      NATO
      32
      853
    7. Rakastuminenhan on psykoosi

      Ei ihme että olen täysin vailla järkeä sen asian suhteen. Eipä olis aikoinaan arvannut, että tossa se tyyppi menee, jonk
      Ikävä
      47
      762
    8. Tähän vaivaan ei auta kuin kaksi asiaa

      1. Tapaaminen uudestaan tai 2. Dementia Anteeksi kun olen olemassa🙄
      Ikävä
      60
      719
    9. Olisinko mä voinut käsittää sut väärin

      Nyt mä kelaan päässäni kaikkea meidän välillä tapahtunutta. Jos mä sit kuitenkin tulkitsin sut väärin? Se, miten sä käyt
      Ikävä
      29
      686
    10. Känniläiset veneessä?

      Siinä taas päästiin näyttämään miten tyhmiä känniläiset on. Heh heh "Kaikki osalliset ovat täysi-ikäisiä ja alkoholin v
      Nurmes
      26
      642
    Aihe