Suora l1 kulkee pisteiden A=(0,-1,0) ja B=(4,-1,2). Suora l2 kulkee pisteiden C=(0,0,5) ja D=(16,-2,3). Piste P on suorien leikkauspiste. Pitäis laskea kuinka kaukana piste P on origosta. Miten tämä nyt laskettiinkaan?
Suorien leikkauspiste?
15
839
Vastaukset
- Anonyymi
Noista tunnetuista pisteistä saa laskettua molemmille suorille omat suuntavektorinsa.
Pisteen P (xi yj zk) avulla saa myös laskettua molemmille suorille suuntavektorit.
Nyt kun merkkaa asianomaiset suuntavektorit samoiksi jollakin vakiolla toisen kerrottuna, niin tulee yhtälöryhmä, joissa on tuntemattomia x,y,z ja ne kaksi vakiota. Eliminoidaan ne vakiot ja sadaan x, y, z ja sitten se kysytty vetorin pituus(9) - Anonyymi
dadadadad
- Anonyymi
Määritetään ensin parametriset suorat P₁(u) = A u(B - A) ja P₂(v) = C v(D - C), 0≤u,v≤1. Merkitsenällä suorien pisteet samoiksi, saadaan yhtälöryhmä. Yhtälöryhmästä ratkaistaan leikkauspisteen parametrit u₁ ja v₁ sekä niitä vastaava leikkauspiste P. Lopuksi määritetään pisteen P etäisyys origosta.
Yleensä 3D-geometrioiden leikkauspisteet kannattaa laskea määrittämällä käyrien välinen minimietäisyys. Jos etäisyys on "riittävän pieni", niin käyrien voidaan katsoa leikkaavan. Muutoin tietokoneiden äärellisellä tarkkuudella ei leikkauspisteiden määritys onnistu. - Anonyymi
Päissään laskien näin. Suora 1 on tasolla y = -1. Siten piste P on tuon tason ja suoran 2 leikkauspiste. Koska pisteiden C ja D y-koordinaatit ovat 0 ja -2, puolittaa taso y = -1 pisteiden C ja D välisen y-koordinaatin. Yhdenmuotoisten kolmioiden perusteella taso puolittaa myös noiden pisteiden väliset x- ja z-koordinaatit. Piste P on siis (8, -1, 4). Pytagoralla saadaan pisteen P etäisyys origosta: sqrt(8^2 1^2 4^2) = 9.
- Anonyymi
Joskus voi tietysti käyttää ratkaisuissa oikoteitä. Yleensä kannattaa kuitenkin opetella yleinen tehtävätyypin ratkaisutapa. Tämän jälkeen tehtäviä ei tarvitse koskaan ajatella, vaan pelkästään soveltaa systemaattista tapaa. Homma helpottuu ja virheet vähenevät.
- Anonyymi
Anonyymi kirjoitti:
Joskus voi tietysti käyttää ratkaisuissa oikoteitä. Yleensä kannattaa kuitenkin opetella yleinen tehtävätyypin ratkaisutapa. Tämän jälkeen tehtäviä ei tarvitse koskaan ajatella, vaan pelkästään soveltaa systemaattista tapaa. Homma helpottuu ja virheet vähenevät.
Olen samaa mieltä. Turha tuollaisia vippaskonsteja on kysyjille esitellä. Esittelijä taitaa vain yrittää korostaa itseään. Kaikki tehtävät eivät ratkea päässälaskuilla joten parempi on heti oppia metodi jolla kaikki samanlaiset tehtävät ratkeavat.
- Anonyymi
Anonyymi kirjoitti:
Olen samaa mieltä. Turha tuollaisia vippaskonsteja on kysyjille esitellä. Esittelijä taitaa vain yrittää korostaa itseään. Kaikki tehtävät eivät ratkea päässälaskuilla joten parempi on heti oppia metodi jolla kaikki samanlaiset tehtävät ratkeavat.
Pätemistä havaittavissa palstalla.
- Anonyymi
Anonyymi kirjoitti:
Pätemistä havaittavissa palstalla.
Paremminkin syvää käytännön kokemusta siitä, miten systemaattiseen ongelmanratkaisuun kannattaa aina pyrkiä. Silloin säheltäminen ja virheet vähenevät.
Eikä tämä päde pelkästään matematiikkaan vaan aivan kaikkeen inhimilliseen tekemiseen. - Anonyymi
Anonyymi kirjoitti:
Paremminkin syvää käytännön kokemusta siitä, miten systemaattiseen ongelmanratkaisuun kannattaa aina pyrkiä. Silloin säheltäminen ja virheet vähenevät.
Eikä tämä päde pelkästään matematiikkaan vaan aivan kaikkeen inhimilliseen tekemiseen.Syvällistä matemaattista esitystä havaittavissa palstalla.
- Anonyymi
Anonyymi kirjoitti:
Syvällistä matemaattista esitystä havaittavissa palstalla.
Selvää vittuilua havaittavissa palstalla.
- Anonyymi
Anonyymi kirjoitti:
Selvää vittuilua havaittavissa palstalla.
Selvää filosofointia havaittavissa palstalla.
- Anonyymi
Anonyymi kirjoitti:
Olen samaa mieltä. Turha tuollaisia vippaskonsteja on kysyjille esitellä. Esittelijä taitaa vain yrittää korostaa itseään. Kaikki tehtävät eivät ratkea päässälaskuilla joten parempi on heti oppia metodi jolla kaikki samanlaiset tehtävät ratkeavat.
On tämä ihme palsta. Jos tehtävää ei ratkaise "open" tavalla, närästää se palstasensoreita ja pitää alkaa opettamaan, millainen keskustelu on täällä sallittua ja millainen ei. Taitaa nämä kurinpitäjät olla entisiä opettajia, jotka kuvittelvat olevansa yhä auktoriteettiasemassa.
- Anonyymi
S1: R1(t) = (1-t) (0,- 1,0) t (4,- 1, 2) = (4t, - 1, 2t)
S2: R2(u) = (1-u) (0,0,5) u(16, - 2, 3) = (16u, - 2 u, 5 - 2u)
Nämä ovat noilla suorilla olevien pisteiden paikkavektoreita. Esim. R1(0) = A.
R1(t) = R2(u) eli
4t = 16u
- 1 = - 2 u
2t=5-2u
u = 1/2
t=2
Leikkauspisteen paikkavektori on R1(2) = (8,- 1, 4) = R2(1/2) = (8, - 1, 4)
Tämän vektorin pituus on sqrt(64 1 16)= 9.Tämä on tietenkin tuo leikkauspisteen etäisyys origosta. Erikoistapauksen, jossa S=H, ratkaisu: https://www.plastikakirurgiafinest.ee/
- Anonyymi
Palstasensorien kiusaksi vielä yksi ratkaisu. Huomataan, että suora 1 on tasossa y = -1. Toinen suora on 5k u*(16i - 2j 3k). Nähdään, että täytyy olla u=1/2, jotta piste P on tasolla y = -1. Sen avulla saadaan muut koordinaatit.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Ukraina, unohtui korona - Grönlanti, unohtu Ukraina
Vinot silmät, unohtui Suomen valtiontalouden turmeleminen.62449Kumpi on sekaisempi - Koskenniemi vai Trump?
Koskenniemi haukkui Trumppia A-studiossa, niin että räkä lensi suusta. Sen sijaan Trump puheessaan sanoi, että Grönlant652258- 2001276
- 711088
- 1071071
"Pähkähullu ruhtinas" sanoi a-studiossa maailmanpolitiikan professori...
...Martti Koskenniemi Trumpista ja hänen toimintatavoistaan, vertasi 1600-luvulla eläneeseen Aurinkokuninkaaseen Ludwig214909Martina ja Matias
Mahtaako Martina yrittää saada Matiasta uudeksi sulhaseksi, niin saisi ne prinsessa häät, mitkä jäi pitämättä, kun Aussi211899Toivottavasti myös pysyy häkissä
https://www.is.fi/kotimaa/art-2000011754428.html 😡😡😡 tommosia saastoja sitä näyttää Suomussalmen suunnalta sikiävän �10827- 47769
Ylipainoiset naiset ovat kokeneet kiusallisen ilmiön deittaillessa
Moni pluskoon nainen kertoo kohtaavansa deittailussa yllättävän ja kiusallisen ilmiön: alussa on luvassa romanssi, mutta49741