Säännöllisen n-kulmion sivun keskipisteen ja tämän sivun muodostavien kärkien vierekkäisten (sivusta ulospäin kumpaankin suuntaan seuraavien) kärkien kautta piirretään ympyrä.
Tämä kuva luultavasti auttaa hahmottamaan tilannetta: https://aijaa.com/fGuWtH
Tehtävä ei ole tarkasti rajattu, laskekaa tuosta mitä vain. Ehkä nyt se miten ympyrän säde r suhtautuu n-kulmion sivuun tulee ensimmäisenä mieleen.
Yleistetty sivun keskipisteen sivuava ympyrä
6
157
Vastaukset
Laskin, että kun n käy kohti ääretöntä, niin myös n-kulmio ja sen kaveriympyrä käyvät yhdeksi.
Tämä liittyy sinkkupalstaan siten, että kun särmät hioutuvat, niin kaveri on helpompi löytää läheltä.
Hmmm... minä sain, että niiden säteiden suhde lähenee arvoa 9/8. Kyllähän sinne ylhäälle näyttää sellainen kuun sirppi isoilla n jäävän, joten säteet eivät lähenisi toisiaan(?)
Tästähän tuli aika mukava tehtävä (kaikki kunnia alkuperäiselle postaajalle, joka toisessa ketjussa tämän tehtävän neliölle asetti).
Käytin Wolfram Alphaa parissa kohtaa: yhtälöryhmän ratkaisuun ja tuohon raja-arvoon, no paljastetaan nyt että minä sain säteiden (itse ympyrän ja n-kulmion ympärille piirretyn ympyrän) suhteeksi r / r_2 kaavan
sin(pi/n)*(5-4cos(pi(n-2)/n)) / (4*sin(pi(n-2)/n))
Ja kaikki tämä olettaen tietysti, että n-kulmion sivu on 1, jolloin r_2 = 1/(2sin(pi/n)).
Tein myös Geogebrassa version, jossa n:ää voi säätää, mutta en osaa jakaa sitä (Google ei taas laske minua sisälle; mitään numeroita en ala sille antamaan ja muulla tavoin tuonne Geogebraan rekisteröitymään :D). Katsotaan jos jaksan Desmokseen tehdä tuon kuvion, josta ratkaisin erinäisistä yhtälöistä (Pythagoraalla ja kosinilauseella) r:n.
Laskuissa tapahtui kyllä paljon kaikkia mukavia sieventymisiä, niin olisikohan tuohon ratkaisuun joku helpompikin tapa...minkkilaukku kirjoitti:
Hmmm... minä sain, että niiden säteiden suhde lähenee arvoa 9/8. Kyllähän sinne ylhäälle näyttää sellainen kuun sirppi isoilla n jäävän, joten säteet eivät lähenisi toisiaan(?)
Tästähän tuli aika mukava tehtävä (kaikki kunnia alkuperäiselle postaajalle, joka toisessa ketjussa tämän tehtävän neliölle asetti).
Käytin Wolfram Alphaa parissa kohtaa: yhtälöryhmän ratkaisuun ja tuohon raja-arvoon, no paljastetaan nyt että minä sain säteiden (itse ympyrän ja n-kulmion ympärille piirretyn ympyrän) suhteeksi r / r_2 kaavan
sin(pi/n)*(5-4cos(pi(n-2)/n)) / (4*sin(pi(n-2)/n))
Ja kaikki tämä olettaen tietysti, että n-kulmion sivu on 1, jolloin r_2 = 1/(2sin(pi/n)).
Tein myös Geogebrassa version, jossa n:ää voi säätää, mutta en osaa jakaa sitä (Google ei taas laske minua sisälle; mitään numeroita en ala sille antamaan ja muulla tavoin tuonne Geogebraan rekisteröitymään :D). Katsotaan jos jaksan Desmokseen tehdä tuon kuvion, josta ratkaisin erinäisistä yhtälöistä (Pythagoraalla ja kosinilauseella) r:n.
Laskuissa tapahtui kyllä paljon kaikkia mukavia sieventymisiä, niin olisikohan tuohon ratkaisuun joku helpompikin tapa...n-kulmion kärjistä aina 2 on ympyrän ulkopuolella, 2 muuta ympyrän kehällä (poikkeuksena tuo kolmio) ja loput n-4 ympyrän sisäpuolella. Ja kun muodoltaan n-kulmio lähestyy ympyrää n:n kasvaessa, niin esim. miljoonakulmiossa 999996 kärjistä on juuri ympyrän sisällä. Jos ympyrän säde on tuolloin 1, niin sivun pituus on n. 2*pii/1 000 000.
scrg kirjoitti:
n-kulmion kärjistä aina 2 on ympyrän ulkopuolella, 2 muuta ympyrän kehällä (poikkeuksena tuo kolmio) ja loput n-4 ympyrän sisäpuolella. Ja kun muodoltaan n-kulmio lähestyy ympyrää n:n kasvaessa, niin esim. miljoonakulmiossa 999996 kärjistä on juuri ympyrän sisällä. Jos ympyrän säde on tuolloin 1, niin sivun pituus on n. 2*pii/1 000 000.
Mutta pystyykö tuon avulla approksimoimaan, koska ne sivut on sillä tavoin "kasassa", että niistä koostuu itse asiassa enemmän? Tein nyt Desmokseen tuon miten lasken: https://www.desmos.com/calculator/4lxwui2bbe
Kuviossa n-kulmion sivu on aina 1 ja se makaa siten, että yksi kärki on x-akselilla pisteessä (r2, 0). Sivu, jota haluttu ympyrä keskikohdassa sivuaa on tämä x-akselista nouseva ensimmäinen sivu AB.
Kyllä se minusta 9/8:aan menee.minkkilaukku kirjoitti:
Mutta pystyykö tuon avulla approksimoimaan, koska ne sivut on sillä tavoin "kasassa", että niistä koostuu itse asiassa enemmän? Tein nyt Desmokseen tuon miten lasken: https://www.desmos.com/calculator/4lxwui2bbe
Kuviossa n-kulmion sivu on aina 1 ja se makaa siten, että yksi kärki on x-akselilla pisteessä (r2, 0). Sivu, jota haluttu ympyrä keskikohdassa sivuaa on tämä x-akselista nouseva ensimmäinen sivu AB.
Kyllä se minusta 9/8:aan menee.Ai niin ja hupsista, tämä tosiaan meni vahingossa väärälle palstalle, matikka-palstalle olin laittamassa :D. Noh, cross-postataan nyt sinnekin...
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 943792
Nainen olet minun
Olen ominut sinut itselleni, täysin itsekkäistä syistä. Haluan rakastella sinua nainen, toivottavasti sinäkin minua. Oli473175Sille ei voi enää mitään
Miten kaikki meni aiemmin. Oon aivan lukossa 🔒 Tuskin uskallat enää mitää tehdä. Ehkä pitää luovuttaa vaan.1002807- 1342457
Harmi jos ei enään nähdä
Ehkä se on parempi näin kuitenkin. Ehkä jotain uutta löytyy. Uskon ja toivon että olet onnellinen. Sinussa on kaikki572450- 612388
Miten suhtauisitte jos kaivattunne sanoisi, ettei hänestä ole seurusteluun
mutta seksi, hellyys ja yhdessäolo kelpaa kyllä??1172377Vau miten upea nainen!
Näytit todella tyrmäävältä. 🤩😍 En meinannut saada katsettani irti sinusta.212304Kunpa minä tietäisin
Olisipa minulla tietoa, siitä oletko sinä nainen kiinnostunut minusta, miehestä joka tätäkirjoittaa, vai olenko minä aiv232296- 642080