Yleistetty sivun keskipisteen sivuava ympyrä

Säännöllisen n-kulmion sivun keskipisteen ja tämän sivun muodostavien kärkien vierekkäisten (sivusta ulospäin kumpaankin suuntaan seuraavien) kärkien kautta piirretään ympyrä.
Tämä kuva luultavasti auttaa hahmottamaan tilannetta: https://aijaa.com/fGuWtH

Tehtävä ei ole tarkasti rajattu, laskekaa tuosta mitä vain. Ehkä nyt se miten ympyrän säde r suhtautuu n-kulmion sivuun tulee ensimmäisenä mieleen.

6

130

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Laskin, että kun n käy kohti ääretöntä, niin myös n-kulmio ja sen kaveriympyrä käyvät yhdeksi.

      • Tämä liittyy sinkkupalstaan siten, että kun särmät hioutuvat, niin kaveri on helpompi löytää läheltä.


      • Hmmm... minä sain, että niiden säteiden suhde lähenee arvoa 9/8. Kyllähän sinne ylhäälle näyttää sellainen kuun sirppi isoilla n jäävän, joten säteet eivät lähenisi toisiaan(?)

        Tästähän tuli aika mukava tehtävä (kaikki kunnia alkuperäiselle postaajalle, joka toisessa ketjussa tämän tehtävän neliölle asetti).

        Käytin Wolfram Alphaa parissa kohtaa: yhtälöryhmän ratkaisuun ja tuohon raja-arvoon, no paljastetaan nyt että minä sain säteiden (itse ympyrän ja n-kulmion ympärille piirretyn ympyrän) suhteeksi r / r_2 kaavan

        sin(pi/n)*(5-4cos(pi(n-2)/n)) / (4*sin(pi(n-2)/n))

        Ja kaikki tämä olettaen tietysti, että n-kulmion sivu on 1, jolloin r_2 = 1/(2sin(pi/n)).

        Tein myös Geogebrassa version, jossa n:ää voi säätää, mutta en osaa jakaa sitä (Google ei taas laske minua sisälle; mitään numeroita en ala sille antamaan ja muulla tavoin tuonne Geogebraan rekisteröitymään :D). Katsotaan jos jaksan Desmokseen tehdä tuon kuvion, josta ratkaisin erinäisistä yhtälöistä (Pythagoraalla ja kosinilauseella) r:n.
        Laskuissa tapahtui kyllä paljon kaikkia mukavia sieventymisiä, niin olisikohan tuohon ratkaisuun joku helpompikin tapa...


      • minkkilaukku kirjoitti:

        Hmmm... minä sain, että niiden säteiden suhde lähenee arvoa 9/8. Kyllähän sinne ylhäälle näyttää sellainen kuun sirppi isoilla n jäävän, joten säteet eivät lähenisi toisiaan(?)

        Tästähän tuli aika mukava tehtävä (kaikki kunnia alkuperäiselle postaajalle, joka toisessa ketjussa tämän tehtävän neliölle asetti).

        Käytin Wolfram Alphaa parissa kohtaa: yhtälöryhmän ratkaisuun ja tuohon raja-arvoon, no paljastetaan nyt että minä sain säteiden (itse ympyrän ja n-kulmion ympärille piirretyn ympyrän) suhteeksi r / r_2 kaavan

        sin(pi/n)*(5-4cos(pi(n-2)/n)) / (4*sin(pi(n-2)/n))

        Ja kaikki tämä olettaen tietysti, että n-kulmion sivu on 1, jolloin r_2 = 1/(2sin(pi/n)).

        Tein myös Geogebrassa version, jossa n:ää voi säätää, mutta en osaa jakaa sitä (Google ei taas laske minua sisälle; mitään numeroita en ala sille antamaan ja muulla tavoin tuonne Geogebraan rekisteröitymään :D). Katsotaan jos jaksan Desmokseen tehdä tuon kuvion, josta ratkaisin erinäisistä yhtälöistä (Pythagoraalla ja kosinilauseella) r:n.
        Laskuissa tapahtui kyllä paljon kaikkia mukavia sieventymisiä, niin olisikohan tuohon ratkaisuun joku helpompikin tapa...

        n-kulmion kärjistä aina 2 on ympyrän ulkopuolella, 2 muuta ympyrän kehällä (poikkeuksena tuo kolmio) ja loput n-4 ympyrän sisäpuolella. Ja kun muodoltaan n-kulmio lähestyy ympyrää n:n kasvaessa, niin esim. miljoonakulmiossa 999996 kärjistä on juuri ympyrän sisällä. Jos ympyrän säde on tuolloin 1, niin sivun pituus on n. 2*pii/1 000 000.


      • scrg kirjoitti:

        n-kulmion kärjistä aina 2 on ympyrän ulkopuolella, 2 muuta ympyrän kehällä (poikkeuksena tuo kolmio) ja loput n-4 ympyrän sisäpuolella. Ja kun muodoltaan n-kulmio lähestyy ympyrää n:n kasvaessa, niin esim. miljoonakulmiossa 999996 kärjistä on juuri ympyrän sisällä. Jos ympyrän säde on tuolloin 1, niin sivun pituus on n. 2*pii/1 000 000.

        Mutta pystyykö tuon avulla approksimoimaan, koska ne sivut on sillä tavoin "kasassa", että niistä koostuu itse asiassa enemmän? Tein nyt Desmokseen tuon miten lasken: https://www.desmos.com/calculator/4lxwui2bbe

        Kuviossa n-kulmion sivu on aina 1 ja se makaa siten, että yksi kärki on x-akselilla pisteessä (r2, 0). Sivu, jota haluttu ympyrä keskikohdassa sivuaa on tämä x-akselista nouseva ensimmäinen sivu AB.

        Kyllä se minusta 9/8:aan menee.


      • minkkilaukku kirjoitti:

        Mutta pystyykö tuon avulla approksimoimaan, koska ne sivut on sillä tavoin "kasassa", että niistä koostuu itse asiassa enemmän? Tein nyt Desmokseen tuon miten lasken: https://www.desmos.com/calculator/4lxwui2bbe

        Kuviossa n-kulmion sivu on aina 1 ja se makaa siten, että yksi kärki on x-akselilla pisteessä (r2, 0). Sivu, jota haluttu ympyrä keskikohdassa sivuaa on tämä x-akselista nouseva ensimmäinen sivu AB.

        Kyllä se minusta 9/8:aan menee.

        Ai niin ja hupsista, tämä tosiaan meni vahingossa väärälle palstalle, matikka-palstalle olin laittamassa :D. Noh, cross-postataan nyt sinnekin...


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Mitä siellä ABC on tapahtunut

      Tavallista isompi operaatio näkyy olevan kyseessä.
      Alajärvi
      182
      7720
    2. Klaukkalan onnettomuus 4.4

      Klaukkalassa oli tänään se kolmen nuoren naisen onnettomuus, onko kellään mitään tietoa mitä kävi tai ketä onnettomuudes
      Nurmijärvi
      92
      3816
    3. Kuvaile elämäsi naista

      Millainen hän on? Mikä tekee hänestä sinulle erityisen?
      Ikävä
      67
      2589
    4. Kolari Klaukkala

      Kaksi teinityttö kuoli. Vastaantulijoille ei käynyt mitenkään. Mikä auto ja malli telineillä oli entä se toinen auto? Se
      Nurmijärvi
      73
      1630
    5. Ukraina ja Zelenskyn ylläpitämä sota tuhoaa Euroopan, ei Venäjä

      Mutta tätä ei YLE eikä Helsingin Sanomat kerto.
      Maailman menoa
      386
      1564
    6. Kuvaile elämäsi miestä

      Millainen hän on? Mikä tekee hänestä sinulle erityisen?
      Ikävä
      64
      1447
    7. Ooo! Kaija Koo saa kesämökille öky-rempan:jättimäinen terde, poreallas... Katso ennen-jälkeen kuvat!

      Wow, nyt on Kaija Koon mökkipihalla kyllä iso muutos! Miltä näyttää, haluaisitko omalle mökillesi vaikkapa samanlaisen l
      Kesämökki
      20
      1436
    8. Toivoisin, että lähentyisit kanssani

      Tänään koin, että välillämme oli enemmän. Kummatkin katsoivat pidempään kuin tavallisesti toista silmiin. En tiedä mistä
      Ikävä
      17
      1111
    9. Olisinpa jo siellä, otatkohan minut vastaan

      Olisitpa lähelläni ja antaisit minun maalata sinulle kuvaa siitä kaikesta ikävästä, tuskasta, epävarmuudesta ja mieleni
      Ikävä
      79
      1050
    10. Kevyt on olo

      Tiedättekö, että olo kevenee kummasti, kun päästää turhista asioista tai ihmisistä irti! Tämä on hyvä näin <3
      Ikävä
      84
      1048
    Aihe