Yleistetty sivun keskipisteen sivuava ympyrä

Säännöllisen n-kulmion sivun keskipisteen ja tämän sivun muodostavien kärkien vierekkäisten (sivusta ulospäin kumpaankin suuntaan seuraavien) kärkien kautta piirretään ympyrä.
Tämä kuva luultavasti auttaa hahmottamaan tilannetta: https://aijaa.com/fGuWtH

Tehtävä ei ole tarkasti rajattu, laskekaa tuosta mitä vain. Ehkä nyt se miten ympyrän säde r suhtautuu n-kulmion sivuun tulee ensimmäisenä mieleen.

6

161

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Laskin, että kun n käy kohti ääretöntä, niin myös n-kulmio ja sen kaveriympyrä käyvät yhdeksi.

      • Tämä liittyy sinkkupalstaan siten, että kun särmät hioutuvat, niin kaveri on helpompi löytää läheltä.


      • Hmmm... minä sain, että niiden säteiden suhde lähenee arvoa 9/8. Kyllähän sinne ylhäälle näyttää sellainen kuun sirppi isoilla n jäävän, joten säteet eivät lähenisi toisiaan(?)

        Tästähän tuli aika mukava tehtävä (kaikki kunnia alkuperäiselle postaajalle, joka toisessa ketjussa tämän tehtävän neliölle asetti).

        Käytin Wolfram Alphaa parissa kohtaa: yhtälöryhmän ratkaisuun ja tuohon raja-arvoon, no paljastetaan nyt että minä sain säteiden (itse ympyrän ja n-kulmion ympärille piirretyn ympyrän) suhteeksi r / r_2 kaavan

        sin(pi/n)*(5-4cos(pi(n-2)/n)) / (4*sin(pi(n-2)/n))

        Ja kaikki tämä olettaen tietysti, että n-kulmion sivu on 1, jolloin r_2 = 1/(2sin(pi/n)).

        Tein myös Geogebrassa version, jossa n:ää voi säätää, mutta en osaa jakaa sitä (Google ei taas laske minua sisälle; mitään numeroita en ala sille antamaan ja muulla tavoin tuonne Geogebraan rekisteröitymään :D). Katsotaan jos jaksan Desmokseen tehdä tuon kuvion, josta ratkaisin erinäisistä yhtälöistä (Pythagoraalla ja kosinilauseella) r:n.
        Laskuissa tapahtui kyllä paljon kaikkia mukavia sieventymisiä, niin olisikohan tuohon ratkaisuun joku helpompikin tapa...


      • minkkilaukku kirjoitti:

        Hmmm... minä sain, että niiden säteiden suhde lähenee arvoa 9/8. Kyllähän sinne ylhäälle näyttää sellainen kuun sirppi isoilla n jäävän, joten säteet eivät lähenisi toisiaan(?)

        Tästähän tuli aika mukava tehtävä (kaikki kunnia alkuperäiselle postaajalle, joka toisessa ketjussa tämän tehtävän neliölle asetti).

        Käytin Wolfram Alphaa parissa kohtaa: yhtälöryhmän ratkaisuun ja tuohon raja-arvoon, no paljastetaan nyt että minä sain säteiden (itse ympyrän ja n-kulmion ympärille piirretyn ympyrän) suhteeksi r / r_2 kaavan

        sin(pi/n)*(5-4cos(pi(n-2)/n)) / (4*sin(pi(n-2)/n))

        Ja kaikki tämä olettaen tietysti, että n-kulmion sivu on 1, jolloin r_2 = 1/(2sin(pi/n)).

        Tein myös Geogebrassa version, jossa n:ää voi säätää, mutta en osaa jakaa sitä (Google ei taas laske minua sisälle; mitään numeroita en ala sille antamaan ja muulla tavoin tuonne Geogebraan rekisteröitymään :D). Katsotaan jos jaksan Desmokseen tehdä tuon kuvion, josta ratkaisin erinäisistä yhtälöistä (Pythagoraalla ja kosinilauseella) r:n.
        Laskuissa tapahtui kyllä paljon kaikkia mukavia sieventymisiä, niin olisikohan tuohon ratkaisuun joku helpompikin tapa...

        n-kulmion kärjistä aina 2 on ympyrän ulkopuolella, 2 muuta ympyrän kehällä (poikkeuksena tuo kolmio) ja loput n-4 ympyrän sisäpuolella. Ja kun muodoltaan n-kulmio lähestyy ympyrää n:n kasvaessa, niin esim. miljoonakulmiossa 999996 kärjistä on juuri ympyrän sisällä. Jos ympyrän säde on tuolloin 1, niin sivun pituus on n. 2*pii/1 000 000.


      • scrg kirjoitti:

        n-kulmion kärjistä aina 2 on ympyrän ulkopuolella, 2 muuta ympyrän kehällä (poikkeuksena tuo kolmio) ja loput n-4 ympyrän sisäpuolella. Ja kun muodoltaan n-kulmio lähestyy ympyrää n:n kasvaessa, niin esim. miljoonakulmiossa 999996 kärjistä on juuri ympyrän sisällä. Jos ympyrän säde on tuolloin 1, niin sivun pituus on n. 2*pii/1 000 000.

        Mutta pystyykö tuon avulla approksimoimaan, koska ne sivut on sillä tavoin "kasassa", että niistä koostuu itse asiassa enemmän? Tein nyt Desmokseen tuon miten lasken: https://www.desmos.com/calculator/4lxwui2bbe

        Kuviossa n-kulmion sivu on aina 1 ja se makaa siten, että yksi kärki on x-akselilla pisteessä (r2, 0). Sivu, jota haluttu ympyrä keskikohdassa sivuaa on tämä x-akselista nouseva ensimmäinen sivu AB.

        Kyllä se minusta 9/8:aan menee.


      • minkkilaukku kirjoitti:

        Mutta pystyykö tuon avulla approksimoimaan, koska ne sivut on sillä tavoin "kasassa", että niistä koostuu itse asiassa enemmän? Tein nyt Desmokseen tuon miten lasken: https://www.desmos.com/calculator/4lxwui2bbe

        Kuviossa n-kulmion sivu on aina 1 ja se makaa siten, että yksi kärki on x-akselilla pisteessä (r2, 0). Sivu, jota haluttu ympyrä keskikohdassa sivuaa on tämä x-akselista nouseva ensimmäinen sivu AB.

        Kyllä se minusta 9/8:aan menee.

        Ai niin ja hupsista, tämä tosiaan meni vahingossa väärälle palstalle, matikka-palstalle olin laittamassa :D. Noh, cross-postataan nyt sinnekin...


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Persujen VigeIius noIasi taas itsensä

      Kun uhriutui vuonna 2024 (siis persujen "vahtivuorolla") Tampereella aloittaneen perheryhmäkodin toiminnasta. ”Leviää k
      Maailman menoa
      150
      3285
    2. Persut ei kestä heidän johtajistaan tehtyä huumoria

      Laajalti tiedostettu tosiasia on, että autoritaariset johtajat ja erinäiset diktaattorit eivät kestä heidän kustannuksel
      Maailman menoa
      80
      2230
    3. Kuka omistaa entisen Veljeskodin?

      Kenellä on varaa pitää hiljattain remontoitua rakennusta tyhjillään? Tehdäänkö siitä Suomen kallein kirpputori vai mikä
      Ähtäri
      10
      2197
    4. Vasemmistoliitto peruisi sosiaaliturvan heikennykset

      He palauttaisivat työttömyysturvan ja asumstuen suojaosat, eli saisi jälleen tienata 300 euroa kuukaudessa ilman tukien
      Maailman menoa
      76
      1890
    5. Oli kiva nähdä sut

      vaikkakin kaukaa ja nopeasti. Tiedän kyllä tasan tarkkaan missä mennään, joten anteeksi jos pilasin päiväsi, ei ollut mi
      Suhteet
      24
      1756
    6. Kohtalokas laukaus

      IL 20.9.25 "Ihminen kuoli baarin edustalla Kajaanissa Poliisi ei epäile tapauksessa rikosta." "Kajaanin keskustassa on k
      Kajaani
      12
      1735
    7. Jos voisit kysyä

      Kaivatultasi vielä yhden kysymyksen, mikä se olisi? Aloitan: Mitä sinä halusit minusta?
      Ikävä
      156
      1733
    8. Työeläkkeen saamiseksi olisi tehtävä töitä

      Meillä on Suomessa iso joukko ihmisiä, joilla olisi vielä työkykyä jäljellä, mutta joilta puuttuu arjesta mielekäs tekem
      Maailman menoa
      24
      1488
    9. Joko alkaa menemään tajuntaan tämä yliluonnollinen yhteys?

      Varmaan pikkuhiljaa. Muista olla kiltisti ❤️
      Ikävä
      17
      1376
    10. Pesäpallo rulettaa

      Hehkutin täällä aikaisemmin Mansen naisten joukkueen Suomen mestaruutta. Jostain kumman syystä kirjoitustani ei enää löy
      Tampere
      3
      1173
    Aihe