Yleistetty sivun keskipisteen sivuava ympyrä

Säännöllisen n-kulmion sivun keskipisteen ja tämän sivun muodostavien kärkien vierekkäisten (sivusta ulospäin kumpaankin suuntaan seuraavien) kärkien kautta piirretään ympyrä.
Tämä kuva luultavasti auttaa hahmottamaan tilannetta: https://aijaa.com/fGuWtH

Tehtävä ei ole tarkasti rajattu, laskekaa tuosta mitä vain. Ehkä nyt se miten ympyrän säde r suhtautuu n-kulmion sivuun tulee ensimmäisenä mieleen.

6

140

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Laskin, että kun n käy kohti ääretöntä, niin myös n-kulmio ja sen kaveriympyrä käyvät yhdeksi.

      • Tämä liittyy sinkkupalstaan siten, että kun särmät hioutuvat, niin kaveri on helpompi löytää läheltä.


      • Hmmm... minä sain, että niiden säteiden suhde lähenee arvoa 9/8. Kyllähän sinne ylhäälle näyttää sellainen kuun sirppi isoilla n jäävän, joten säteet eivät lähenisi toisiaan(?)

        Tästähän tuli aika mukava tehtävä (kaikki kunnia alkuperäiselle postaajalle, joka toisessa ketjussa tämän tehtävän neliölle asetti).

        Käytin Wolfram Alphaa parissa kohtaa: yhtälöryhmän ratkaisuun ja tuohon raja-arvoon, no paljastetaan nyt että minä sain säteiden (itse ympyrän ja n-kulmion ympärille piirretyn ympyrän) suhteeksi r / r_2 kaavan

        sin(pi/n)*(5-4cos(pi(n-2)/n)) / (4*sin(pi(n-2)/n))

        Ja kaikki tämä olettaen tietysti, että n-kulmion sivu on 1, jolloin r_2 = 1/(2sin(pi/n)).

        Tein myös Geogebrassa version, jossa n:ää voi säätää, mutta en osaa jakaa sitä (Google ei taas laske minua sisälle; mitään numeroita en ala sille antamaan ja muulla tavoin tuonne Geogebraan rekisteröitymään :D). Katsotaan jos jaksan Desmokseen tehdä tuon kuvion, josta ratkaisin erinäisistä yhtälöistä (Pythagoraalla ja kosinilauseella) r:n.
        Laskuissa tapahtui kyllä paljon kaikkia mukavia sieventymisiä, niin olisikohan tuohon ratkaisuun joku helpompikin tapa...


      • minkkilaukku kirjoitti:

        Hmmm... minä sain, että niiden säteiden suhde lähenee arvoa 9/8. Kyllähän sinne ylhäälle näyttää sellainen kuun sirppi isoilla n jäävän, joten säteet eivät lähenisi toisiaan(?)

        Tästähän tuli aika mukava tehtävä (kaikki kunnia alkuperäiselle postaajalle, joka toisessa ketjussa tämän tehtävän neliölle asetti).

        Käytin Wolfram Alphaa parissa kohtaa: yhtälöryhmän ratkaisuun ja tuohon raja-arvoon, no paljastetaan nyt että minä sain säteiden (itse ympyrän ja n-kulmion ympärille piirretyn ympyrän) suhteeksi r / r_2 kaavan

        sin(pi/n)*(5-4cos(pi(n-2)/n)) / (4*sin(pi(n-2)/n))

        Ja kaikki tämä olettaen tietysti, että n-kulmion sivu on 1, jolloin r_2 = 1/(2sin(pi/n)).

        Tein myös Geogebrassa version, jossa n:ää voi säätää, mutta en osaa jakaa sitä (Google ei taas laske minua sisälle; mitään numeroita en ala sille antamaan ja muulla tavoin tuonne Geogebraan rekisteröitymään :D). Katsotaan jos jaksan Desmokseen tehdä tuon kuvion, josta ratkaisin erinäisistä yhtälöistä (Pythagoraalla ja kosinilauseella) r:n.
        Laskuissa tapahtui kyllä paljon kaikkia mukavia sieventymisiä, niin olisikohan tuohon ratkaisuun joku helpompikin tapa...

        n-kulmion kärjistä aina 2 on ympyrän ulkopuolella, 2 muuta ympyrän kehällä (poikkeuksena tuo kolmio) ja loput n-4 ympyrän sisäpuolella. Ja kun muodoltaan n-kulmio lähestyy ympyrää n:n kasvaessa, niin esim. miljoonakulmiossa 999996 kärjistä on juuri ympyrän sisällä. Jos ympyrän säde on tuolloin 1, niin sivun pituus on n. 2*pii/1 000 000.


      • scrg kirjoitti:

        n-kulmion kärjistä aina 2 on ympyrän ulkopuolella, 2 muuta ympyrän kehällä (poikkeuksena tuo kolmio) ja loput n-4 ympyrän sisäpuolella. Ja kun muodoltaan n-kulmio lähestyy ympyrää n:n kasvaessa, niin esim. miljoonakulmiossa 999996 kärjistä on juuri ympyrän sisällä. Jos ympyrän säde on tuolloin 1, niin sivun pituus on n. 2*pii/1 000 000.

        Mutta pystyykö tuon avulla approksimoimaan, koska ne sivut on sillä tavoin "kasassa", että niistä koostuu itse asiassa enemmän? Tein nyt Desmokseen tuon miten lasken: https://www.desmos.com/calculator/4lxwui2bbe

        Kuviossa n-kulmion sivu on aina 1 ja se makaa siten, että yksi kärki on x-akselilla pisteessä (r2, 0). Sivu, jota haluttu ympyrä keskikohdassa sivuaa on tämä x-akselista nouseva ensimmäinen sivu AB.

        Kyllä se minusta 9/8:aan menee.


      • minkkilaukku kirjoitti:

        Mutta pystyykö tuon avulla approksimoimaan, koska ne sivut on sillä tavoin "kasassa", että niistä koostuu itse asiassa enemmän? Tein nyt Desmokseen tuon miten lasken: https://www.desmos.com/calculator/4lxwui2bbe

        Kuviossa n-kulmion sivu on aina 1 ja se makaa siten, että yksi kärki on x-akselilla pisteessä (r2, 0). Sivu, jota haluttu ympyrä keskikohdassa sivuaa on tämä x-akselista nouseva ensimmäinen sivu AB.

        Kyllä se minusta 9/8:aan menee.

        Ai niin ja hupsista, tämä tosiaan meni vahingossa väärälle palstalle, matikka-palstalle olin laittamassa :D. Noh, cross-postataan nyt sinnekin...


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Tänään pyörit ajatuksissa enemmän, kun erehdyin lukemaan palstaa

      En saisi, silti toivon että sinä vielä palaat ja otetaan oikeasti selvää, hioituuko särmät ja sulaudummeko yhteen. Vuod
      Ikävä
      20
      2403
    2. Nainen, sellaista tässä ajattelin

      Minulla on olo, että täällä on edelleen joku, jolla on jotain käsiteltävää. Hän ei ole päässyt lähtemään vielä vaan jost
      Ikävä
      238
      1756
    3. Seiska: Anne Kukkohovi myy pikkuhousujaan ja antaa penisarvioita

      Melko hupaisaa: https://www.seiska.fi/vain-seiskassa/ex-huippumalli-anne-kukkohovin-amerikan-valloitus-vastatuulessa-myy
      Maailman menoa
      316
      1359
    4. Miten tämä meidän tarina

      Sitten päättyy?
      Ikävä
      65
      969
    5. Kulujen jako parisuhteessa

      Hei, miten teillä jaetaan kulut parisuhteessa? Työttömyyttä ja opiskelua tulee omalla kohdalla jatkumaan vielä jonkin ai
      Parisuhde
      55
      958
    6. Missä olit kun tajusit, että teistä tulee joskus pari?

      Kuvaile sitä paikkaa, hetkeä ja tilannetta.
      Ikävä
      54
      850
    7. En todellakaan halua että

      Tämä päättyy näin
      Ikävä
      39
      844
    8. J miehelle viesti menneisyydestä

      On jo useampi vuosi, kun ollaan oltu näköyhteydessä. Jäi tyhjä olo, koska rakastin. En tietenkään sitä kertonut. Mutta e
      Ikävä
      35
      757
    9. Paikat tapeltu

      Ei mennyt ihan persujen toiveiden mukaan Ei kait nyt 20 ääntä ja arpajais voitolla voi olla Ähtärin kaupungin puheenjoh
      Ähtäri
      37
      697
    10. Naista puukotettiin kasvoihin

      Maanantai-iltana kello 23 jälkeen yksityisasunnossa Kiteellä puukotettiin 80-luvulla syntynyttä naista muun muassa kasvo
      Kitee
      19
      649
    Aihe