Kaikkihan tietävät että alkuluvuissa on mielivaltaisen suuria hyppyjä (luvut n! 2, n! 3, ..., n! n ovat kaikki yhdistettyjä lukuja).
Mutta entäpä jos halutaan että alkuluvusta hyppy edelliseen ja seuraavaan ovat molemmat mielivaltaisen suuria? Eli ts. jos on annettu n, niin löytyykö aina alkuluku p, siten että luvut p-n, ..., p-1, p 1, ..., p n ovat yhdistettyjä lukuja?
Eristetyt alkuluvut
2
189
Vastaukset
- Anonyymi
Löytyy, Perustelu tosin vaatii melko pitkälle lukuteorian tuntemusta. Alkulukujen keskimääräinen esiintymistiheys harvenee lukujen kasvaessa, joska tulos seuraa.
Kuinka se nähdään pelkän tiheyden avulla? Nehän voisi olla siten että kaksi on aina melko lähekkäin ja sitten taas suuri hyppy, jonka jälkeen taas kaksi lähekkäin, jne.
Tässä eräs todistus, joka mukailee tuota "yhden hypyn todistusta", mutta käyttää sekin aika järeää lausetta, nimittäin Dirichlet'n lausetta https://en.wikipedia.org/wiki/Dirichlet's_theorem_on_arithmetic_progressions , jonka mukaan muotoa a md, m ∈ N olevia alkulukuja on äärettömän monta, kun syt(a, d)=1.
Olkoon haluttu eristysmatka n annettu. Valitaan jokin alkuluku q>n 2.
Merkitään
M = 2*3*...*(q-1) * (q 1) * ... * (2q-1)
(Eli samoin kuin yhdelle hypylle otettiin n!, niin nyt q:n molemmin puolin kerrotaan q-1:n matkalta kaikki luvut keskenään.)
Nyt, koska q on alkuluku eikä jaa mitään tulon termeistä, niin syt(M, q) = 1.
Valitaan sitten (Dirichlet'n lauseen takaama) alkuluku p, jolle pätee p = M*t q, jollekin t>0.
Nyt p on haluttu eristetty alkuluku, sillä jokaiselle k = 1, 2, ..., n
p - k = M*t q-k, joka on jaollinen q-k:lla, sillä (q-k) | M
ja
p k = M*t q k, joka on jaollinen q k:lla, sillä (q k) | M.
Huomioita:
Itse asiassa yllä (kuten yhden hypyn tapauksessakaan) ei olisi tarvinnut ottaa M:ksi koko tuloa, vaan termien pyj olisi riittänyt.
Dirichlet'n lauseen äärrettömyys-osaa, saati tasa-jakauteneisuutta ei olisi tarvittu. Riittää, että löytyy yksi alkuluku p muotoa p = M*t q, t>=1. Mutta onko tälle asialle olemassa helpompaa todistusta menemättä Dirichlet'n lauseen kautta? Ainakin tässä videossa: https://www.youtube.com/watch?v=zG185Ef1gPM&list=PLU3f-I7n3Bhxge578PJZptOLPUlxs3RBP&index=9&t=473 vihjataan, että se ei aivan triviaalia olisi.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Useita puukotettu Tampereella
Mikäs homma tämä nyt taas on? "Useaa henkilöä on puukotettu Tampereen keskustassa kauppakeskus Ratinan lähistöllä." ht2154168Kuka rääkkää eläimiä Puolangalla?
Poliisi ampui toistakymmentä nälkiintynyttä eläintä Puolangalla Tilalta oli ollut karkuteillä lähes viisikymmentä nälkii692675Asiakas iski kaupassa varastelua tehneen kanveesiin.
https://www.iltalehti.fi/kotimaa/a/33a85463-e4d5-45ed-8014-db51fe8079ec Oikein. Näin sitä pitää. Kyllä kaupoissa valtava3932391- 472323
Meneeköhän sulla
oikeasti pinnan alla yhtä huonosti kuin mulla? Tai yhtä huonosti mutta jollain eri tyylillä? Ei olisi pitänyt jättää sua321551Muutama kysymys ja huomio hindulaisesta kulttuurista.
Vedakirjoituksia pidetään historiallisina teksteinä, ei siis "julistuksena" kuten esimerkiksi Raamattua, vaan kuten koul5301347Jos ei tiedä mitä toisesta haluaa
Älä missään nimessä anna mitään merkkejä kiinnostuksesta. Ole haluamatta mitään. Täytyy ajatella toistakin. Ei kukaan em951316- 571300
- 751263
Jumala puhui minulle
Hän kertoi sinusta asioita, joiden takia jaksan, uskon ja luotan. Hän kuvaili sinua minulle ja pakahduin onnesta kuulles1251176