Integaali (x*ln(x)) potenssiin n nollasta ykköseen

Yritän laskea, Leibnizin metodiksiko sitä nyt kutsutaan kun lisätään uusi parametri, jonka jollain arvolla integraali saadaan ja derivoidaan (ja siirretään integraalimerkin alle)(?), tuollaista. Siis minä laitan t:n ln(x):ään eli ln(tx). Täällä on laskuni: https://www.desmos.com/calculator/bh4rvon3xa . Olen jo arvannut kaavan integraalin arvolle

n! / (n 1)^(n 1),

mutta tuossa laskemisessa on yksi kohta jota en saa menemään: Kun lasketaan I_n(t):tä, niin sinne tulee ylimääräinen x:ä. Desmoksessa g on I'(t) ja siinä alla on se muoto, johon pääsin. Miten tuosta? Pitäisikö antaa x:n potenssin olla m ja johtaa yleisempi kaava. Kokeilin osittaisintegraatiota, mutta sekään ei mielestäni toiminut.

11

218

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Siis integraalista tulee mukavasti n ulos, joka johtaa rekursiivisesti n!:ään kun saataisiin jäämään alempi I_n. Mutta mistäs 1/(n 1)^(n 1) saadaan? Merkitsen siis integraalia I_n(t). Derivaatalle saadaan

      I_n'(t) = n/t integraali nollasta ykköseen x (x*ln(tx))^(n-1) dx

      mutta tuosta en osaa jatkaa. Mitenkäs I_n(t) saadaan derivaatasta, ei oikein uskalla integroidakaan (vai mistä mihin (ykköseen oletettavasti) pitäisi??)

    • Anonyymi

      En nyt ehkä ihan saa esityksestäsi selvää mitä varsinaisesti tarkoitat. Kuitenkin, kts. Wikipedia: Leibnitz integral rule. Onko tuo Feynmanin temppu etsimäsi?

      • Anonyymi

        Sori. P.o. : Leibniz


      • Anonyymi
        Anonyymi kirjoitti:

        Sori. P.o. : Leibniz

        Vielä lisäys: Mihin tässä osittaisintegrointia kummempaa tarvitaan? Jo sillä on helppo osoittaa että vähän yleisemmin:

        Int(0 <= x <= 1) (x^m (ln(x))^n) dx = (- 1)^n * n! / (m 1)^(n 1)


      • Anonyymi kirjoitti:

        Vielä lisäys: Mihin tässä osittaisintegrointia kummempaa tarvitaan? Jo sillä on helppo osoittaa että vähän yleisemmin:

        Int(0 <= x <= 1) (x^m (ln(x))^n) dx = (- 1)^n * n! / (m 1)^(n 1)

        Joo, Feynmanin tempusta oli kyse. Joo, nyt näänkin, että kun ottaakin x^m * ln(x)^n, niin on helpompi. Eka tapaus n=0 tulee suoraan integroimalla ja sitten induktiivisesti joko osittaisintegroinnilla, tai Leibnizilä:

        I_n,m ' (t) = n/t (n-1)! / ((n 1)^m t^(n-1))

        eli sinne tulee t^(-n), joka integroidaan -1/(n 1) t^(-n 1):ksi eli sitä kauttahan se (n 1)^(m 1) tulee.
        Tuota toisen parametrin m ottamista vähän ounastelinkin, mutta en jotenkin vienyt ajatusta loppuun :D.


      • Anonyymi
        minkkilaukku kirjoitti:

        Joo, Feynmanin tempusta oli kyse. Joo, nyt näänkin, että kun ottaakin x^m * ln(x)^n, niin on helpompi. Eka tapaus n=0 tulee suoraan integroimalla ja sitten induktiivisesti joko osittaisintegroinnilla, tai Leibnizilä:

        I_n,m ' (t) = n/t (n-1)! / ((n 1)^m t^(n-1))

        eli sinne tulee t^(-n), joka integroidaan -1/(n 1) t^(-n 1):ksi eli sitä kauttahan se (n 1)^(m 1) tulee.
        Tuota toisen parametrin m ottamista vähän ounastelinkin, mutta en jotenkin vienyt ajatusta loppuun :D.

        Sekoiletko? Katsohan tarkemmin esittämääni tulosta.Siinä esiintyy (m 1)^(n 1) ja lisäksi (- 1)^n.


      • Anonyymi
        Anonyymi kirjoitti:

        Sekoiletko? Katsohan tarkemmin esittämääni tulosta.Siinä esiintyy (m 1)^(n 1) ja lisäksi (- 1)^n.

        Joo, miinus merkki unohtu mainita kaavoissa, mutta -1/(n 1) t^(-n 1):ksi :ssahan se on, joten -1 tulee joka kerta tekijäksi, joten yhteensä juuri (-1)^n. Huomasin kyllä kun olin jo viestin laittanut :D.


      • Anonyymi
        Anonyymi kirjoitti:

        Joo, miinus merkki unohtu mainita kaavoissa, mutta -1/(n 1) t^(-n 1):ksi :ssahan se on, joten -1 tulee joka kerta tekijäksi, joten yhteensä juuri (-1)^n. Huomasin kyllä kun olin jo viestin laittanut :D.

        Ei ole tarkoitukseni jankuttaa pikku asiasta mutta kiinnitin tuon - merkin lisäksi huomiotani siihen että viestissäsi / eilen 15:20 olivat m ja n vaihtaneet paikkaa ja lauseke oli virheellinen. Sitten kun n = m tuo ei enää näy.
        Sinulla luki " ...kauttahan se (n 1)^(m 1) tulee".


      • Anonyymi kirjoitti:

        Ei ole tarkoitukseni jankuttaa pikku asiasta mutta kiinnitin tuon - merkin lisäksi huomiotani siihen että viestissäsi / eilen 15:20 olivat m ja n vaihtaneet paikkaa ja lauseke oli virheellinen. Sitten kun n = m tuo ei enää näy.
        Sinulla luki " ...kauttahan se (n 1)^(m 1) tulee".

        Totta, ei se taida mennäkään läpi. Miten tästä jatkettaisiin:

        I_m,n'(t)
        = int_0^1 nx^m * ln(tx)^(n-1) * x /(tx) * x dx
        = n/t int_0^1 x^(m 1) ln(tx)^(n-1)

        Nyt t:n mukana olo tuo kuitenkin vaikeuksia. Mikä pitää ottaa induktio-oletukseksi (tai siis eihän sitä saa tuosta vaan ottaa vaan sen pitää olla totta). Ehkä ilman derivointia olisi helpompi. Osittaisintegroinnissa u = x^m ja v' = ln(x)^n (?) Mutta näin tämän tehtävän interointi merkin alla derivoinnin sovellutuksena, niin pitäisihän se jotenkin sitenkin mennä.


      • Anonyymi
        minkkilaukku kirjoitti:

        Totta, ei se taida mennäkään läpi. Miten tästä jatkettaisiin:

        I_m,n'(t)
        = int_0^1 nx^m * ln(tx)^(n-1) * x /(tx) * x dx
        = n/t int_0^1 x^(m 1) ln(tx)^(n-1)

        Nyt t:n mukana olo tuo kuitenkin vaikeuksia. Mikä pitää ottaa induktio-oletukseksi (tai siis eihän sitä saa tuosta vaan ottaa vaan sen pitää olla totta). Ehkä ilman derivointia olisi helpompi. Osittaisintegroinnissa u = x^m ja v' = ln(x)^n (?) Mutta näin tämän tehtävän interointi merkin alla derivoinnin sovellutuksena, niin pitäisihän se jotenkin sitenkin mennä.

        Kaava on siis

        Int(0,1) (x^m * (log(x))^n) dx = (- 1)^n * n!/(m 1)^(n 1)
        Kirjoitin nyt matematiikassa yleiseen tapaan log tuon ln-merkinnän sijasta. Harvemmin muita logaritmeja teoreettisissa käsittelyissä käytetään.

        Int(0,1) (x^m (log(x))dx = Int(0,1) (log(x) d(x^(m 1) / (m 1)) = Sij(0,1) (log(x) x^(m 1)/(m 1)
        - Int(0,1) (1/(m 1) * x^m)dx = - 1/(m 1)^2
        Kaava pitää siis paikkansa kun n = 1.

        Oletetaan nyt että kaava pätee arvoilla n ja m.

        Int(0,1) (x^m (log(x))^(n 1)) dx = Int(0,1) ((log(x))^(n 1) d(x^(m 1)/(m 1) =

        Sij(0,1) ((log(x))^(n 1) * x^(m 1)/(m 1) - Int(0,1) (x^(m 1)/(m 1) * (n 1) (log(x))^n* 1/x) dx=
        -(n 1)/(m 1)* Int(0,1) (x^m (log(x))^n)dx =
        -(n 1)/(m 1) * (- 1)^n * n!/((m 1)^(n 1) = (- 1) (n 1) * (n 1)!/(m 1)^(n 2)

        MOT


      • Anonyymi
        Anonyymi kirjoitti:

        Kaava on siis

        Int(0,1) (x^m * (log(x))^n) dx = (- 1)^n * n!/(m 1)^(n 1)
        Kirjoitin nyt matematiikassa yleiseen tapaan log tuon ln-merkinnän sijasta. Harvemmin muita logaritmeja teoreettisissa käsittelyissä käytetään.

        Int(0,1) (x^m (log(x))dx = Int(0,1) (log(x) d(x^(m 1) / (m 1)) = Sij(0,1) (log(x) x^(m 1)/(m 1)
        - Int(0,1) (1/(m 1) * x^m)dx = - 1/(m 1)^2
        Kaava pitää siis paikkansa kun n = 1.

        Oletetaan nyt että kaava pätee arvoilla n ja m.

        Int(0,1) (x^m (log(x))^(n 1)) dx = Int(0,1) ((log(x))^(n 1) d(x^(m 1)/(m 1) =

        Sij(0,1) ((log(x))^(n 1) * x^(m 1)/(m 1) - Int(0,1) (x^(m 1)/(m 1) * (n 1) (log(x))^n* 1/x) dx=
        -(n 1)/(m 1)* Int(0,1) (x^m (log(x))^n)dx =
        -(n 1)/(m 1) * (- 1)^n * n!/((m 1)^(n 1) = (- 1) (n 1) * (n 1)!/(m 1)^(n 2)

        MOT

        Johan tuohon kerkesi ainakin yksi kirjoitusvirhe. viimeisen yhtäläisyysmerkin jälkeen tulee olla
        (- 1)^(n 1) * (n 1)!/ (m 1)^(n 2)
        Kenkkuja kirjoitettavia tämmöiset!


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. SDP jo 100 % suositumpi kuin persut

      Kertoo Hesarin uusin kannatuskysely. Demareiden kannatus on miltei tuplat verrattuna persuihinl. Suomen kansa ei selväst
      Maailman menoa
      294
      14647
    2. Valtavasti suomalaisia asunnottomina, mutta ei yhtään somalia

      tai muuta kehitysmaalaista. Mites tässä näin kävi? Tiedän hyvin, että esim. somaleita lentää ulos mm. Hekan asunnoista,
      Maailman menoa
      171
      4197
    3. PS ylivoimainen nousija myös HS:n gallupissa, SDP laskee taas

      https://www.verkkouutiset.fi/a/hs-gallup-sdpn-suosio-laskee-ps-nousussa/#0a7d2507 Ylivoimainen viime kuukausien nousija
      Maailman menoa
      135
      3891
    4. Totuuspuolueen johtaja Jaana "prinsessa Leia" Kavonius on vangittu

      Kavonius määrättiin jo keväällä 2024 poissaolevana vangittavaksi todennäköisin syin epäiltynä 13 vainoamisesta ja 24 kun
      Maailman menoa
      448
      1860
    5. Kovia syytöksiä Stefan Thermaninsta.

      Jättänyt taas maksamatta kohuliikemies, hupparit ja muita ostamiaan tavaroita. On soiteltu liikkeestä ja Stefan iskenyt
      Kotimaiset julkkisjuorut
      183
      1839
    6. En minä kyllä enää odota sinua

      Olet siellä sen harmaan kanssa. Niin, annoit minun nähdä lämpimät tunteesi siitä huolimatta. Se merkitsi kyllä paljon. O
      Ikävä
      35
      1736
    7. Jos joku luulee että kaikki käy

      Sanon vain tämän. Minun kanssani ei neuvotella. Minun kanssani eletään tasavertaisesti. Jos se on liikaa, niin ovi rinn
      Ikävä
      52
      1385
    8. Joka kolmas työtön on työkyvytön

      Viime vuonna työnhakuvelvoitteen ulkopuolella oli noin kolmannes työttömistä työnhakijoista. Huhheijaa, mihin suomalais
      Maailman menoa
      152
      1231
    9. Sakin hivutus - ilmiö

      Miten tuollainen tuollainen ilmiö kuin ”sakin hivutus” syntyy? Mitä syitä ilmiön syntymiseen tarvitaan? Onko sakissa jok
      80 plus
      66
      1163
    10. Ei ole rohkeutta tulla jututtamaan

      Voidaan me nähdä ja tervehtiä, sitäkin harvoin, mutta iso kynnys on edes mennä lähelle ja kysyä kuulumisia. Ymmärrät var
      Tunteet
      8
      1141
    Aihe