Integaali (x*ln(x)) potenssiin n nollasta ykköseen

Yritän laskea, Leibnizin metodiksiko sitä nyt kutsutaan kun lisätään uusi parametri, jonka jollain arvolla integraali saadaan ja derivoidaan (ja siirretään integraalimerkin alle)(?), tuollaista. Siis minä laitan t:n ln(x):ään eli ln(tx). Täällä on laskuni: https://www.desmos.com/calculator/bh4rvon3xa . Olen jo arvannut kaavan integraalin arvolle

n! / (n 1)^(n 1),

mutta tuossa laskemisessa on yksi kohta jota en saa menemään: Kun lasketaan I_n(t):tä, niin sinne tulee ylimääräinen x:ä. Desmoksessa g on I'(t) ja siinä alla on se muoto, johon pääsin. Miten tuosta? Pitäisikö antaa x:n potenssin olla m ja johtaa yleisempi kaava. Kokeilin osittaisintegraatiota, mutta sekään ei mielestäni toiminut.

11

126

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Siis integraalista tulee mukavasti n ulos, joka johtaa rekursiivisesti n!:ään kun saataisiin jäämään alempi I_n. Mutta mistäs 1/(n 1)^(n 1) saadaan? Merkitsen siis integraalia I_n(t). Derivaatalle saadaan

      I_n'(t) = n/t integraali nollasta ykköseen x (x*ln(tx))^(n-1) dx

      mutta tuosta en osaa jatkaa. Mitenkäs I_n(t) saadaan derivaatasta, ei oikein uskalla integroidakaan (vai mistä mihin (ykköseen oletettavasti) pitäisi??)

    • Anonyymi

      En nyt ehkä ihan saa esityksestäsi selvää mitä varsinaisesti tarkoitat. Kuitenkin, kts. Wikipedia: Leibnitz integral rule. Onko tuo Feynmanin temppu etsimäsi?

      • Anonyymi

        Sori. P.o. : Leibniz


      • Anonyymi
        Anonyymi kirjoitti:

        Sori. P.o. : Leibniz

        Vielä lisäys: Mihin tässä osittaisintegrointia kummempaa tarvitaan? Jo sillä on helppo osoittaa että vähän yleisemmin:

        Int(0 <= x <= 1) (x^m (ln(x))^n) dx = (- 1)^n * n! / (m 1)^(n 1)


      • Anonyymi kirjoitti:

        Vielä lisäys: Mihin tässä osittaisintegrointia kummempaa tarvitaan? Jo sillä on helppo osoittaa että vähän yleisemmin:

        Int(0 <= x <= 1) (x^m (ln(x))^n) dx = (- 1)^n * n! / (m 1)^(n 1)

        Joo, Feynmanin tempusta oli kyse. Joo, nyt näänkin, että kun ottaakin x^m * ln(x)^n, niin on helpompi. Eka tapaus n=0 tulee suoraan integroimalla ja sitten induktiivisesti joko osittaisintegroinnilla, tai Leibnizilä:

        I_n,m ' (t) = n/t (n-1)! / ((n 1)^m t^(n-1))

        eli sinne tulee t^(-n), joka integroidaan -1/(n 1) t^(-n 1):ksi eli sitä kauttahan se (n 1)^(m 1) tulee.
        Tuota toisen parametrin m ottamista vähän ounastelinkin, mutta en jotenkin vienyt ajatusta loppuun :D.


      • Anonyymi
        minkkilaukku kirjoitti:

        Joo, Feynmanin tempusta oli kyse. Joo, nyt näänkin, että kun ottaakin x^m * ln(x)^n, niin on helpompi. Eka tapaus n=0 tulee suoraan integroimalla ja sitten induktiivisesti joko osittaisintegroinnilla, tai Leibnizilä:

        I_n,m ' (t) = n/t (n-1)! / ((n 1)^m t^(n-1))

        eli sinne tulee t^(-n), joka integroidaan -1/(n 1) t^(-n 1):ksi eli sitä kauttahan se (n 1)^(m 1) tulee.
        Tuota toisen parametrin m ottamista vähän ounastelinkin, mutta en jotenkin vienyt ajatusta loppuun :D.

        Sekoiletko? Katsohan tarkemmin esittämääni tulosta.Siinä esiintyy (m 1)^(n 1) ja lisäksi (- 1)^n.


      • Anonyymi
        Anonyymi kirjoitti:

        Sekoiletko? Katsohan tarkemmin esittämääni tulosta.Siinä esiintyy (m 1)^(n 1) ja lisäksi (- 1)^n.

        Joo, miinus merkki unohtu mainita kaavoissa, mutta -1/(n 1) t^(-n 1):ksi :ssahan se on, joten -1 tulee joka kerta tekijäksi, joten yhteensä juuri (-1)^n. Huomasin kyllä kun olin jo viestin laittanut :D.


      • Anonyymi
        Anonyymi kirjoitti:

        Joo, miinus merkki unohtu mainita kaavoissa, mutta -1/(n 1) t^(-n 1):ksi :ssahan se on, joten -1 tulee joka kerta tekijäksi, joten yhteensä juuri (-1)^n. Huomasin kyllä kun olin jo viestin laittanut :D.

        Ei ole tarkoitukseni jankuttaa pikku asiasta mutta kiinnitin tuon - merkin lisäksi huomiotani siihen että viestissäsi / eilen 15:20 olivat m ja n vaihtaneet paikkaa ja lauseke oli virheellinen. Sitten kun n = m tuo ei enää näy.
        Sinulla luki " ...kauttahan se (n 1)^(m 1) tulee".


      • Anonyymi kirjoitti:

        Ei ole tarkoitukseni jankuttaa pikku asiasta mutta kiinnitin tuon - merkin lisäksi huomiotani siihen että viestissäsi / eilen 15:20 olivat m ja n vaihtaneet paikkaa ja lauseke oli virheellinen. Sitten kun n = m tuo ei enää näy.
        Sinulla luki " ...kauttahan se (n 1)^(m 1) tulee".

        Totta, ei se taida mennäkään läpi. Miten tästä jatkettaisiin:

        I_m,n'(t)
        = int_0^1 nx^m * ln(tx)^(n-1) * x /(tx) * x dx
        = n/t int_0^1 x^(m 1) ln(tx)^(n-1)

        Nyt t:n mukana olo tuo kuitenkin vaikeuksia. Mikä pitää ottaa induktio-oletukseksi (tai siis eihän sitä saa tuosta vaan ottaa vaan sen pitää olla totta). Ehkä ilman derivointia olisi helpompi. Osittaisintegroinnissa u = x^m ja v' = ln(x)^n (?) Mutta näin tämän tehtävän interointi merkin alla derivoinnin sovellutuksena, niin pitäisihän se jotenkin sitenkin mennä.


      • Anonyymi
        minkkilaukku kirjoitti:

        Totta, ei se taida mennäkään läpi. Miten tästä jatkettaisiin:

        I_m,n'(t)
        = int_0^1 nx^m * ln(tx)^(n-1) * x /(tx) * x dx
        = n/t int_0^1 x^(m 1) ln(tx)^(n-1)

        Nyt t:n mukana olo tuo kuitenkin vaikeuksia. Mikä pitää ottaa induktio-oletukseksi (tai siis eihän sitä saa tuosta vaan ottaa vaan sen pitää olla totta). Ehkä ilman derivointia olisi helpompi. Osittaisintegroinnissa u = x^m ja v' = ln(x)^n (?) Mutta näin tämän tehtävän interointi merkin alla derivoinnin sovellutuksena, niin pitäisihän se jotenkin sitenkin mennä.

        Kaava on siis

        Int(0,1) (x^m * (log(x))^n) dx = (- 1)^n * n!/(m 1)^(n 1)
        Kirjoitin nyt matematiikassa yleiseen tapaan log tuon ln-merkinnän sijasta. Harvemmin muita logaritmeja teoreettisissa käsittelyissä käytetään.

        Int(0,1) (x^m (log(x))dx = Int(0,1) (log(x) d(x^(m 1) / (m 1)) = Sij(0,1) (log(x) x^(m 1)/(m 1)
        - Int(0,1) (1/(m 1) * x^m)dx = - 1/(m 1)^2
        Kaava pitää siis paikkansa kun n = 1.

        Oletetaan nyt että kaava pätee arvoilla n ja m.

        Int(0,1) (x^m (log(x))^(n 1)) dx = Int(0,1) ((log(x))^(n 1) d(x^(m 1)/(m 1) =

        Sij(0,1) ((log(x))^(n 1) * x^(m 1)/(m 1) - Int(0,1) (x^(m 1)/(m 1) * (n 1) (log(x))^n* 1/x) dx=
        -(n 1)/(m 1)* Int(0,1) (x^m (log(x))^n)dx =
        -(n 1)/(m 1) * (- 1)^n * n!/((m 1)^(n 1) = (- 1) (n 1) * (n 1)!/(m 1)^(n 2)

        MOT


      • Anonyymi
        Anonyymi kirjoitti:

        Kaava on siis

        Int(0,1) (x^m * (log(x))^n) dx = (- 1)^n * n!/(m 1)^(n 1)
        Kirjoitin nyt matematiikassa yleiseen tapaan log tuon ln-merkinnän sijasta. Harvemmin muita logaritmeja teoreettisissa käsittelyissä käytetään.

        Int(0,1) (x^m (log(x))dx = Int(0,1) (log(x) d(x^(m 1) / (m 1)) = Sij(0,1) (log(x) x^(m 1)/(m 1)
        - Int(0,1) (1/(m 1) * x^m)dx = - 1/(m 1)^2
        Kaava pitää siis paikkansa kun n = 1.

        Oletetaan nyt että kaava pätee arvoilla n ja m.

        Int(0,1) (x^m (log(x))^(n 1)) dx = Int(0,1) ((log(x))^(n 1) d(x^(m 1)/(m 1) =

        Sij(0,1) ((log(x))^(n 1) * x^(m 1)/(m 1) - Int(0,1) (x^(m 1)/(m 1) * (n 1) (log(x))^n* 1/x) dx=
        -(n 1)/(m 1)* Int(0,1) (x^m (log(x))^n)dx =
        -(n 1)/(m 1) * (- 1)^n * n!/((m 1)^(n 1) = (- 1) (n 1) * (n 1)!/(m 1)^(n 2)

        MOT

        Johan tuohon kerkesi ainakin yksi kirjoitusvirhe. viimeisen yhtäläisyysmerkin jälkeen tulee olla
        (- 1)^(n 1) * (n 1)!/ (m 1)^(n 2)
        Kenkkuja kirjoitettavia tämmöiset!


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Uskalla lähestyä minua

      Mitä siinä menetät? Vai tyydytkö kirjoittelemaan täällä? Minä olen jo tehnyt aloitteen. Paitsi jos sinua ei kiinnosta. S
      Ikävä
      60
      6294
    2. Päätin että suostun keskustelemaan

      Jos sellainen tilanne tulee.
      Ikävä
      100
      3252
    3. Oulaskankaan päätöksistä

      https://www.facebook.com/share/v/1BSCFTMTyX/ Nyt tuli kova päätös, arvostan tätä Kuoppamäen suoraselkäisyyttä.
      Oulainen
      25
      2566
    4. EMMINÄ JAKSA OOTTAA KOLMEA VIIKKOA!

      Kyllä se aiemmin parantuu😘
      Ikävä
      21
      2198
    5. Mitä toivot Suomi24:ltä? Osallistu sivuston kehitykseen!

      Moikka keskustelijat! Terveisiä Suomi24:n kehitystiimiltä. Vuosi lähenee loppuaan, mutta ennen kuin rauhoitumme joulun
      Suomi24 Blogi ★
      355
      1788
    6. Tiedoksi että

      En aijo laittaa viestiä enkä soittaa enkä edes harkitse asiaa.
      Ikävä
      27
      1696
    7. Oikeasti tekisi

      Mieli hypätä sun kaulaan eikä kävellä ohi
      Ikävä
      25
      1480
    8. Suomessa oikeistohallitus vallassa: nälkäiset lapset hakevat jo Punaiselta ristiltä ruoka-apua

      Sosiaaliturvaleikkaukset ovat lisänneet asiointia ruoka-avussa. Kyllä tämän maan tilanne on surkea, kun lapset näkevät n
      Perussuomalaiset
      226
      1413
    9. Kyllä mä sen joudun tekemään

      Että lähden pois. Itse halusit että tämä menee näin.
      Ikävä
      49
      1392
    10. Miten menee?

      Tykkäätkö minusta nyt vähemmän kun näit minut?
      Tunteet
      32
      1368
    Aihe