Yritän laskea, Leibnizin metodiksiko sitä nyt kutsutaan kun lisätään uusi parametri, jonka jollain arvolla integraali saadaan ja derivoidaan (ja siirretään integraalimerkin alle)(?), tuollaista. Siis minä laitan t:n ln(x):ään eli ln(tx). Täällä on laskuni: https://www.desmos.com/calculator/bh4rvon3xa . Olen jo arvannut kaavan integraalin arvolle
n! / (n 1)^(n 1),
mutta tuossa laskemisessa on yksi kohta jota en saa menemään: Kun lasketaan I_n(t):tä, niin sinne tulee ylimääräinen x:ä. Desmoksessa g on I'(t) ja siinä alla on se muoto, johon pääsin. Miten tuosta? Pitäisikö antaa x:n potenssin olla m ja johtaa yleisempi kaava. Kokeilin osittaisintegraatiota, mutta sekään ei mielestäni toiminut.
Integaali (x*ln(x)) potenssiin n nollasta ykköseen
11
218
Vastaukset
Siis integraalista tulee mukavasti n ulos, joka johtaa rekursiivisesti n!:ään kun saataisiin jäämään alempi I_n. Mutta mistäs 1/(n 1)^(n 1) saadaan? Merkitsen siis integraalia I_n(t). Derivaatalle saadaan
I_n'(t) = n/t integraali nollasta ykköseen x (x*ln(tx))^(n-1) dx
mutta tuosta en osaa jatkaa. Mitenkäs I_n(t) saadaan derivaatasta, ei oikein uskalla integroidakaan (vai mistä mihin (ykköseen oletettavasti) pitäisi??)- Anonyymi
En nyt ehkä ihan saa esityksestäsi selvää mitä varsinaisesti tarkoitat. Kuitenkin, kts. Wikipedia: Leibnitz integral rule. Onko tuo Feynmanin temppu etsimäsi?
- Anonyymi
Sori. P.o. : Leibniz
- Anonyymi
Anonyymi kirjoitti:
Sori. P.o. : Leibniz
Vielä lisäys: Mihin tässä osittaisintegrointia kummempaa tarvitaan? Jo sillä on helppo osoittaa että vähän yleisemmin:
Int(0 <= x <= 1) (x^m (ln(x))^n) dx = (- 1)^n * n! / (m 1)^(n 1) Anonyymi kirjoitti:
Vielä lisäys: Mihin tässä osittaisintegrointia kummempaa tarvitaan? Jo sillä on helppo osoittaa että vähän yleisemmin:
Int(0 <= x <= 1) (x^m (ln(x))^n) dx = (- 1)^n * n! / (m 1)^(n 1)Joo, Feynmanin tempusta oli kyse. Joo, nyt näänkin, että kun ottaakin x^m * ln(x)^n, niin on helpompi. Eka tapaus n=0 tulee suoraan integroimalla ja sitten induktiivisesti joko osittaisintegroinnilla, tai Leibnizilä:
I_n,m ' (t) = n/t (n-1)! / ((n 1)^m t^(n-1))
eli sinne tulee t^(-n), joka integroidaan -1/(n 1) t^(-n 1):ksi eli sitä kauttahan se (n 1)^(m 1) tulee.
Tuota toisen parametrin m ottamista vähän ounastelinkin, mutta en jotenkin vienyt ajatusta loppuun :D.- Anonyymi
minkkilaukku kirjoitti:
Joo, Feynmanin tempusta oli kyse. Joo, nyt näänkin, että kun ottaakin x^m * ln(x)^n, niin on helpompi. Eka tapaus n=0 tulee suoraan integroimalla ja sitten induktiivisesti joko osittaisintegroinnilla, tai Leibnizilä:
I_n,m ' (t) = n/t (n-1)! / ((n 1)^m t^(n-1))
eli sinne tulee t^(-n), joka integroidaan -1/(n 1) t^(-n 1):ksi eli sitä kauttahan se (n 1)^(m 1) tulee.
Tuota toisen parametrin m ottamista vähän ounastelinkin, mutta en jotenkin vienyt ajatusta loppuun :D.Sekoiletko? Katsohan tarkemmin esittämääni tulosta.Siinä esiintyy (m 1)^(n 1) ja lisäksi (- 1)^n.
- Anonyymi
Anonyymi kirjoitti:
Sekoiletko? Katsohan tarkemmin esittämääni tulosta.Siinä esiintyy (m 1)^(n 1) ja lisäksi (- 1)^n.
Joo, miinus merkki unohtu mainita kaavoissa, mutta -1/(n 1) t^(-n 1):ksi :ssahan se on, joten -1 tulee joka kerta tekijäksi, joten yhteensä juuri (-1)^n. Huomasin kyllä kun olin jo viestin laittanut :D.
- Anonyymi
Anonyymi kirjoitti:
Joo, miinus merkki unohtu mainita kaavoissa, mutta -1/(n 1) t^(-n 1):ksi :ssahan se on, joten -1 tulee joka kerta tekijäksi, joten yhteensä juuri (-1)^n. Huomasin kyllä kun olin jo viestin laittanut :D.
Ei ole tarkoitukseni jankuttaa pikku asiasta mutta kiinnitin tuon - merkin lisäksi huomiotani siihen että viestissäsi / eilen 15:20 olivat m ja n vaihtaneet paikkaa ja lauseke oli virheellinen. Sitten kun n = m tuo ei enää näy.
Sinulla luki " ...kauttahan se (n 1)^(m 1) tulee". Anonyymi kirjoitti:
Ei ole tarkoitukseni jankuttaa pikku asiasta mutta kiinnitin tuon - merkin lisäksi huomiotani siihen että viestissäsi / eilen 15:20 olivat m ja n vaihtaneet paikkaa ja lauseke oli virheellinen. Sitten kun n = m tuo ei enää näy.
Sinulla luki " ...kauttahan se (n 1)^(m 1) tulee".Totta, ei se taida mennäkään läpi. Miten tästä jatkettaisiin:
I_m,n'(t)
= int_0^1 nx^m * ln(tx)^(n-1) * x /(tx) * x dx
= n/t int_0^1 x^(m 1) ln(tx)^(n-1)
Nyt t:n mukana olo tuo kuitenkin vaikeuksia. Mikä pitää ottaa induktio-oletukseksi (tai siis eihän sitä saa tuosta vaan ottaa vaan sen pitää olla totta). Ehkä ilman derivointia olisi helpompi. Osittaisintegroinnissa u = x^m ja v' = ln(x)^n (?) Mutta näin tämän tehtävän interointi merkin alla derivoinnin sovellutuksena, niin pitäisihän se jotenkin sitenkin mennä.- Anonyymi
minkkilaukku kirjoitti:
Totta, ei se taida mennäkään läpi. Miten tästä jatkettaisiin:
I_m,n'(t)
= int_0^1 nx^m * ln(tx)^(n-1) * x /(tx) * x dx
= n/t int_0^1 x^(m 1) ln(tx)^(n-1)
Nyt t:n mukana olo tuo kuitenkin vaikeuksia. Mikä pitää ottaa induktio-oletukseksi (tai siis eihän sitä saa tuosta vaan ottaa vaan sen pitää olla totta). Ehkä ilman derivointia olisi helpompi. Osittaisintegroinnissa u = x^m ja v' = ln(x)^n (?) Mutta näin tämän tehtävän interointi merkin alla derivoinnin sovellutuksena, niin pitäisihän se jotenkin sitenkin mennä.Kaava on siis
Int(0,1) (x^m * (log(x))^n) dx = (- 1)^n * n!/(m 1)^(n 1)
Kirjoitin nyt matematiikassa yleiseen tapaan log tuon ln-merkinnän sijasta. Harvemmin muita logaritmeja teoreettisissa käsittelyissä käytetään.
Int(0,1) (x^m (log(x))dx = Int(0,1) (log(x) d(x^(m 1) / (m 1)) = Sij(0,1) (log(x) x^(m 1)/(m 1)
- Int(0,1) (1/(m 1) * x^m)dx = - 1/(m 1)^2
Kaava pitää siis paikkansa kun n = 1.
Oletetaan nyt että kaava pätee arvoilla n ja m.
Int(0,1) (x^m (log(x))^(n 1)) dx = Int(0,1) ((log(x))^(n 1) d(x^(m 1)/(m 1) =
Sij(0,1) ((log(x))^(n 1) * x^(m 1)/(m 1) - Int(0,1) (x^(m 1)/(m 1) * (n 1) (log(x))^n* 1/x) dx=
-(n 1)/(m 1)* Int(0,1) (x^m (log(x))^n)dx =
-(n 1)/(m 1) * (- 1)^n * n!/((m 1)^(n 1) = (- 1) (n 1) * (n 1)!/(m 1)^(n 2)
MOT - Anonyymi
Anonyymi kirjoitti:
Kaava on siis
Int(0,1) (x^m * (log(x))^n) dx = (- 1)^n * n!/(m 1)^(n 1)
Kirjoitin nyt matematiikassa yleiseen tapaan log tuon ln-merkinnän sijasta. Harvemmin muita logaritmeja teoreettisissa käsittelyissä käytetään.
Int(0,1) (x^m (log(x))dx = Int(0,1) (log(x) d(x^(m 1) / (m 1)) = Sij(0,1) (log(x) x^(m 1)/(m 1)
- Int(0,1) (1/(m 1) * x^m)dx = - 1/(m 1)^2
Kaava pitää siis paikkansa kun n = 1.
Oletetaan nyt että kaava pätee arvoilla n ja m.
Int(0,1) (x^m (log(x))^(n 1)) dx = Int(0,1) ((log(x))^(n 1) d(x^(m 1)/(m 1) =
Sij(0,1) ((log(x))^(n 1) * x^(m 1)/(m 1) - Int(0,1) (x^(m 1)/(m 1) * (n 1) (log(x))^n* 1/x) dx=
-(n 1)/(m 1)* Int(0,1) (x^m (log(x))^n)dx =
-(n 1)/(m 1) * (- 1)^n * n!/((m 1)^(n 1) = (- 1) (n 1) * (n 1)!/(m 1)^(n 2)
MOTJohan tuohon kerkesi ainakin yksi kirjoitusvirhe. viimeisen yhtäläisyysmerkin jälkeen tulee olla
(- 1)^(n 1) * (n 1)!/ (m 1)^(n 2)
Kenkkuja kirjoitettavia tämmöiset!
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
SDP jo 100 % suositumpi kuin persut
Kertoo Hesarin uusin kannatuskysely. Demareiden kannatus on miltei tuplat verrattuna persuihinl. Suomen kansa ei selväst29414647Valtavasti suomalaisia asunnottomina, mutta ei yhtään somalia
tai muuta kehitysmaalaista. Mites tässä näin kävi? Tiedän hyvin, että esim. somaleita lentää ulos mm. Hekan asunnoista,1714197PS ylivoimainen nousija myös HS:n gallupissa, SDP laskee taas
https://www.verkkouutiset.fi/a/hs-gallup-sdpn-suosio-laskee-ps-nousussa/#0a7d2507 Ylivoimainen viime kuukausien nousija1353891Totuuspuolueen johtaja Jaana "prinsessa Leia" Kavonius on vangittu
Kavonius määrättiin jo keväällä 2024 poissaolevana vangittavaksi todennäköisin syin epäiltynä 13 vainoamisesta ja 24 kun4481860Kovia syytöksiä Stefan Thermaninsta.
Jättänyt taas maksamatta kohuliikemies, hupparit ja muita ostamiaan tavaroita. On soiteltu liikkeestä ja Stefan iskenyt1831839En minä kyllä enää odota sinua
Olet siellä sen harmaan kanssa. Niin, annoit minun nähdä lämpimät tunteesi siitä huolimatta. Se merkitsi kyllä paljon. O351736Jos joku luulee että kaikki käy
Sanon vain tämän. Minun kanssani ei neuvotella. Minun kanssani eletään tasavertaisesti. Jos se on liikaa, niin ovi rinn521385Joka kolmas työtön on työkyvytön
Viime vuonna työnhakuvelvoitteen ulkopuolella oli noin kolmannes työttömistä työnhakijoista. Huhheijaa, mihin suomalais1521231Sakin hivutus - ilmiö
Miten tuollainen tuollainen ilmiö kuin ”sakin hivutus” syntyy? Mitä syitä ilmiön syntymiseen tarvitaan? Onko sakissa jok661163Ei ole rohkeutta tulla jututtamaan
Voidaan me nähdä ja tervehtiä, sitäkin harvoin, mutta iso kynnys on edes mennä lähelle ja kysyä kuulumisia. Ymmärrät var81141