kuka osais tämän neuvoa

Anonyymi

Pirjon viiden ensimmäisen matematiikan kurssin keskiarvo oli 7,4. Mitä hänen olisi saatava viimeisestä kurssista arvosanaksi, jotta hän saisi lopulliseksi arvosanaksi 8? (Lopullinen arvosana lasketaan kurssiarvosanojen aritmeettisena keskiarvona pyöristyssääntöjä noudattaen.)

12

1672

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Olkoon x kuudennen kurssin arvosana. Keskiarvon pitää pyöristyä kasiksi, joten
      (5*7,4 x)/6 > 7,95

      Tuosta aloittajan pitäisi jo itsekin päästä eteenpäin.

      • Ensinnäkin tuossa pitää olla >= eikä =

        Lisäksi arvosanat annetaan yleensä kokonaislukuina joten (5*7,4 x)/6 >= 7,5


      • malaire kirjoitti:

        Ensinnäkin tuossa pitää olla >= eikä =

        Lisäksi arvosanat annetaan yleensä kokonaislukuina joten (5*7,4 x)/6 >= 7,5

        Piti kirjoittaa "eikä >".


    • Jos kurssien keskiarvo on ainakin 7,5 ja alle 8,5 niin tulos pyöristyy kasiin.

      En tiedä minkä tason tehtävä on kyseessä, mutta itse ratkaisisin tämän kaksoisepäyhtälönä:

      7,5 <= (5 * 7,4 x) / 6 < 8,5

      Ratkaise x.

      • Anonyymi

        Otappa silmä käteen ja lue tehtävänanto. Keskiarvo lasketaan selvästi yhden desimaalin tarkkuudella. Toisin sanoen, 7,5 ei pyöristy mihinkään. 7,95 pyöristyy kasiin.


      • Anonyymi kirjoitti:

        Otappa silmä käteen ja lue tehtävänanto. Keskiarvo lasketaan selvästi yhden desimaalin tarkkuudella. Toisin sanoen, 7,5 ei pyöristy mihinkään. 7,95 pyöristyy kasiin.

        Otappa silmä käteen ja lue tehtävänanto. Tehtävänannossa ei kerrota millä tarkkuudella loppuarvosana annetaan.

        Jos loppuarvosana on yhden desimaalin tarkkuudella niin sitten tehtävä on mahdoton koska edes 10 viimeisestä kurssista ei nostaisi kurssien keskiarvoa lukuun 7,95 vaan keskiarvo jäisi selvästi tuon alle.

        (5 * 7,4 10) / 6 = 7,83333333...


      • Anonyymi
        Anonyymi kirjoitti:

        Otappa silmä käteen ja lue tehtävänanto. Keskiarvo lasketaan selvästi yhden desimaalin tarkkuudella. Toisin sanoen, 7,5 ei pyöristy mihinkään. 7,95 pyöristyy kasiin.

        Jos laskun tulos halutaan yhden desimaalin tarkkuudella, niin lasku syytä laskea kahden desimaalin tarkkuudella.

        Yleensä saadaan maksimitarkkuus, jos lasketaan käytettävissä olevien numeroden maksimimimäärällä, ja tulos pyöristetään lopussa haluttuun tarkkuuteen.


    • Anonyymi

      Pirjo, Pirjo, ei taida nyt onnistua tuo.

    • Anonyymi

      Viiden ensimmäisen kurssin arvosanojen summa on 5*7,4 = 37. Lasketaanpa kuinka monella tavalla tämä on voinut tulla. Eli meidän pitää selvittää kaikki 37:n järj. ositukset viiteen osaan, joissa osat saavat olla väliltä [4, 10].
      Revitään tätä varten x^37:n kerroin seuraavasta ulos

      (x^4 x^5 ... x^10)^5

      Sehän on 1330 eli aika monella tavalla on voinut tuo keskiarvo tulla.
      Mitenkäs muuten, jos osien määrää ei ole rajoitettu, niin pystyykös tuota generoivalla funktiolla tekemäänkään, siinähän pitäisi olla potenssiin ääretön, missä tuossa edellä on vitonen. Mutta jos ei sulkujen sisällä ole x^0:aa niin eihän siinä ole mitään järkeä. Ja jotenkinhan se pitäisi siis olla, että niissä lopuissa äärettömässä otetaan se x^0 eli 1:n tuloon mukaan, eikä sitä saa alussa ottaa. Vai onkos se tehtävä niin, että summaa kaikki potenssit, kun kerta osien määrä voi olla mikä tahansa äärellinen luku.

      • Anonyymi

        Funktion integrointi ja osittaisderivointi sinulta unohtuivat aivan kokonaan. Sellaisia pitää varmaan käyttää näin vaativassa laskutehtävässä.


      • Anonyymi
        Anonyymi kirjoitti:

        Funktion integrointi ja osittaisderivointi sinulta unohtuivat aivan kokonaan. Sellaisia pitää varmaan käyttää näin vaativassa laskutehtävässä.

        En löydä windowsin laskimesta derivaattaa?


      • Anonyymi

        Joo

        sum_{j=0}^\infty (x^4 .. x^10)^j
        = sum_{j=0}^\infty ((x^4-x^11)/(1-x))^j
        = 1/(1-(x^4-x^11)/(1-x))
        = -1/((x 1) (x^9 x^7 x^5 x^3 - x^2 x - 1))
        = 1 x^4 x^5 x^6 x^7 2 x^8 3 x^9 ... 9416 x^36 12756 x^37 17272 x^38 O(x^39)

        Joten jos kurssien määrää aluksi ei tiedetä, niin tapoja on 12756, kun arvosanojen summa on 37.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Takaisin ylös

    Luetuimmat keskustelut

    1. Laitetaas nyt kirjaimet tänne

      kuka kaipaa ja ketä ?
      Ikävä
      93
      7858
    2. Pieni häivähdys sinusta

      Olet niin totinen
      Ikävä
      40
      3782
    3. Lähetä terveisesi kaipaamallesi henkilölle

      Vauva-palstalta tuttua kaipaamista uudessa ympäristössä. Kaipuu jatkukoon 💘
      Ikävä
      102
      1896
    4. Missä olet ollut tänään kaivattuni?

      Ikävä sai yliotteen ❤️ En nähnyt sua tänään söpö mies
      Ikävä
      24
      1210
    5. Taas ryssittiin oikein kunnolla

      r….ä hyökkäsi Viroon sikaili taas ajattelematta yhtään mitään https://www.is.fi/ulkomaat/art-2000011347289.html
      NATO
      32
      1073
    6. Valtimon Haapajärvellä paatti mäni nurin

      Ikävä onnettomuus Haapajärvellä. Vene hörpppi vettä matkalla saaren. Veneessä ol 5 henkilöä, kolme uiskenteli rantaan,
      Nurmes
      28
      1013
    7. Rakastuminenhan on psykoosi

      Ei ihme että olen täysin vailla järkeä sen asian suhteen. Eipä olis aikoinaan arvannut, että tossa se tyyppi menee, jonk
      Ikävä
      53
      837
    8. Olisinko mä voinut käsittää sut väärin

      Nyt mä kelaan päässäni kaikkea meidän välillä tapahtunutta. Jos mä sit kuitenkin tulkitsin sut väärin? Se, miten sä käyt
      Ikävä
      31
      792
    9. Vanha Suola janottaa Iivarilla

      Vanha suola janottaa Siikalatvan kunnanjohtaja Pekka Iivaria. Mies kiertää Kemijärven kyläjuhlia ja kulttuuritapahtumia
      Kemijärvi
      10
      790
    10. Tähän vaivaan ei auta kuin kaksi asiaa

      1. Tapaaminen uudestaan tai 2. Dementia Anteeksi kun olen olemassa🙄
      Ikävä
      60
      749
    Aihe