Tarvitsisin apua kahteen geometrian tehtävään:
1. Taso kulkee origon sekä pisteiden (0, 2, 1) ja (3, -2, -2) kautta. Laske pisteen (1, -3, 4) etäisyys tasosta.
2. Mikä pallopinnan (x - 7)^2 (y 2)^2 (z 1)^2 = 16 piste on lähimpänä tasoa 2x - 3y - z 7 = 0
Ykköstehtävässä pitäisi varmaan ensin muodostaa tason yhtälö normaalimuodossa, kaavalla
(x - x(0)) (y - y(0)) (z - z(0))
saan tason yhtälöksi
3x - 2y -2z -3 = 0
Etäisyyden kaavalla saan tulokseksi
d = (3 * 1 -2*(-3) -2*4 -3) / sqrt(3^2 2^2 2^2) = -3,395
Tässä ratkaisussa ei ole muuta vikaa kuin että se on väärin. Kakkostehtävässä pitäisi laskea pallon keskipisteen kautta piirretyn tason normaalin ja pallopinnan leikkauspiste. Pallon keskipisteeksi tulee kaiketi 7, -2, -1. Sitten pitäisi selvittää tason normaalivektori ja normaalisuora. Sitä en ole onnistunut tekemään. Saisinko apua? Kiitoksia
Apua analyyttiseen geometriaan
5
108
Vastaukset
- Anonyymi
Taso kulkee origon kautta ja sennyhtälö on siis muotoa ax by cz = 0
a*0 b*2 c*1 = 0
a*3 -b*2 - c*2 = 0
2b = - c ja 3a c - 2c = 0 eli c = 3a. b = - 3/2 a.Taso on siis
ax- 3/2 a y 3a z = 0 eli
(1) x - 3/2 y 3z = 0
Tark. Taso kulkee origon kautta, 0-3/2 * 2 3*1 =0 ja 3-3/2*(- 2) 3*(- 2 )= 0.
Sitten tuo piste (1, - 3, 4).
1*1 -3/2*(-3) 3*4 = 35/2
Taso
(2) x - 3/2 y 3z = 35/2
on tason (1) suuntainen (niillä on sama normaali (1,-3/2,3))
ja kulkee tuon pisteen (1,-3,4) kautta.Tuon pisteen etäisyys tasosta (1) on sama kuin tasojen (1) ja (2) etäisyys eli ( 35/2) / sqrt(1^2 (3/2)^2 3^2)= 5 - Anonyymi
2- Taso on
(1) 2x-3y-z = - 7.
Sen normaali on (2,- 3, - 1). Pallon keskipiste on (7,- 2, - 1).
Tämän kautta kulkeva tason (1) suuntainen taso saadaan näin:
2*7 - 3* (- 2) - 1* (- 1) = 21 joten tuo taso on
(2) 2x -3y - z = 21
Tasojen (1) ja (2) etäisyys on (21 - (- 7))/ sqrt(4 9 1) = 28/sqrt(14) = 2 sqrt(14).
Tämä on siis myös pallon keskipisteen etäisyys tasosta (1).
Pallon säde on 4.
Jokohan selviää?- Anonyymi
Tuo binomikaavojen käyttö on vähän kryptistä minulle, mutta sainpahan tehtyä. Kiitoksia
T. Aloittaja - Anonyymi
Anonyymi kirjoitti:
Tuo binomikaavojen käyttö on vähän kryptistä minulle, mutta sainpahan tehtyä. Kiitoksia
T. AloittajaEn kyllä tiedä mistä ihmeen "binomikaavoista" sinä puhut.
Jos tason yhtälö on
(1) ax by cz = d,
niin otetaan 2 tason pistettä joiden paikkavektorit ovat R1 ja R2. Vektori R2 - R1 on tason suuntainen ja sisätulo
( (a,b,c) , R2 - R1) = ((a,b,c),R1) - ((a,b,c), R2) = d - d = 0 (R1 ja R2 olivat tason pisteiden paikkavektoreita ja toteuttavat tason nyhtälön ).
Vektori (a,b,c) on siis tason normaali.
Erityisesti, jois taso kulkee origon kautta n, niin d = 0 ja tason pisteen paikkavektori R1 on samalla myös tason vektori. Jos esim. R1 = (x,y,z) niin
( (a,b,c) , (x,y,z) ) = ax by cz = 0 joten (a,b,c) on tuon tason normaali.
Tason (1) etäisyys origosta = sen minkä hyvänsä pisteen paikkavektorin tason ykkösnormaalille otetun projektion pituus.
Olkoon piste R = (r1,r2,r3). Merkitään sqrt(a^2 b^2 c^2) = P
1-normaali on N = 1/P * (a,b,c) ja tuo R:n projektion pituus sille on
l (R,N) l =lar1 b r2 c r3 l /(P = l d l/P (R oli tason npisteen paikkavektori ja toteuttaa tason siis tason yhtälön (1).
Jos meillä on tason (1) lisäksi toinen taso
(2) ax by cz = f
niin tämän etäisyys origosta on l f l /P.
Tasojen (1) ja (2) etäisyys on siis ld - fl / P - Anonyymi
Anonyymi kirjoitti:
En kyllä tiedä mistä ihmeen "binomikaavoista" sinä puhut.
Jos tason yhtälö on
(1) ax by cz = d,
niin otetaan 2 tason pistettä joiden paikkavektorit ovat R1 ja R2. Vektori R2 - R1 on tason suuntainen ja sisätulo
( (a,b,c) , R2 - R1) = ((a,b,c),R1) - ((a,b,c), R2) = d - d = 0 (R1 ja R2 olivat tason pisteiden paikkavektoreita ja toteuttavat tason nyhtälön ).
Vektori (a,b,c) on siis tason normaali.
Erityisesti, jois taso kulkee origon kautta n, niin d = 0 ja tason pisteen paikkavektori R1 on samalla myös tason vektori. Jos esim. R1 = (x,y,z) niin
( (a,b,c) , (x,y,z) ) = ax by cz = 0 joten (a,b,c) on tuon tason normaali.
Tason (1) etäisyys origosta = sen minkä hyvänsä pisteen paikkavektorin tason ykkösnormaalille otetun projektion pituus.
Olkoon piste R = (r1,r2,r3). Merkitään sqrt(a^2 b^2 c^2) = P
1-normaali on N = 1/P * (a,b,c) ja tuo R:n projektion pituus sille on
l (R,N) l =lar1 b r2 c r3 l /(P = l d l/P (R oli tason npisteen paikkavektori ja toteuttaa tason siis tason yhtälön (1).
Jos meillä on tason (1) lisäksi toinen taso
(2) ax by cz = f
niin tämän etäisyys origosta on l f l /P.
Tasojen (1) ja (2) etäisyys on siis ld - fl / PLisään nyt vielä varmuuden vuoksi että tasot (1) ja (2) siis ovat yhdensuuntaiset, niillä on sama ykkösnormaali N = 1/P * (a,b,c).
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis
Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu2712360En kadu sitä, että kohtasin hänet
mutta kadun sitä, että aloin kirjoittamaan tänne palstalle. Jollain tasolla se saa vain asiat enemmän solmuun ja tekee n831031Oisko mitenkään mahdollisesti ihan pikkuisen ikävä..
...edes ihan pikkuisen pikkuisen ikävä sulla mua??.. Että miettisit vaikka vähän missähän se nyt on ja oiskohan hauska n581031- 1081000
Noniin rakas
Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi81941- 44861
Au pair -työ Thaimaassa herättää kiivasta keskustelua somessa: "4cm torakoita, huumeita, tauteja..."
Au pairit -sarjan uusi kausi herättää keskustelua Suomi24 Keskustelupalvelussa. Mielipiteitä ladataan puolesta ja vastaa21848Helena Koivu : Ja kohta mennään taas
Kohta kohtalon päivä lähestyy kuinka käy Helena Koivulle ? Kenen puolella olet? Jos vastauksesi on Helenan niin voisi67756- 33697
Tässä totuus jälleensyntymisestä - voit yllättyä
Jumalasta syntyminen Raamatussa ei tässä Joh. 3:3. ole alkukielen mukaan ollenkaan sanaa uudestisyntyminen, vaan pelkä299694