Vektorilaskentaan apua?

Anonyymi

Jorma seurasi lentokentän reunalla pienkoneen nousua. Hän seisoi 57 metriä
pohjoiseen kohdasta, jossa lentokoneen pyörät irtosivat maasta. Koneen noususuunta oli vektorin v=-2i-5j k suuntainen (vektori i osoittaa itään ja j pohjoiseen). Kuinka korkealla kone oli silloin, kun se oli lähinnä Jormaa?

Olisiko apuja tehtävän ratkaisemiseen? Nyt ei oikein aukene. Pitääkö tuo Jorman seisomakohta merkata kertoimella samansuuruiseksi vektorin v kanssa, vai pitääkö ensin selvittää missä pisteessä koneen pyörät eivät enää osu maahan?

12

152

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Eikö tuo kone ole lähimpänä Jormaa, kun se on lähdössä? Konehan liikkuu lounaaseen ja Jorma on pohjoisessa. Koneen lähin korkeushan on 0m, jos kerran ilmaan noustua se jatkaa tasan poispäin. Voi olla, että tajuan jotain väärin.

    • Anonyymi

      Ota koneen ilmaannousukohta origoksi. Jorma seisoo (heh) tällöin pisteessä (0, 57, 0).
      Lentokone liikkuu suoralla, jonka suuntavektori on annettu ja joka kulkee origon kautta (koska origo valittiin niin). Käytä pisteen etäisyys suorasta kaavaa, tai koska tarvitset myös sen pisteen, joka on lähimpänä, niin itseasiassa johda se itse minimoimalla etäisyys. Siinä on yksi parametri, joten se on tavallinen yhden muuttujan funktion minimointi. Ja kannattaaa mimimoida etäisyyden neliötä, niin pääsee helpommalla.

      • Anonyymi

        Tehtävä kuluu ilmeisesti vektorilaskentaan joten vektoreilla pitäisi ratkaista. Muodostetaan lentokoneen nousuvektori yhdellä parametrilla. Sitten vektori tarkkailijasta koneeseen tuntemattomilla. Tarkkailijan sijaintivektori plus tuo vektori = koneen vektori. Pistetulolla kohtisuoruusehto, niin saadaan parametriarvo.
        Mutta ongelmana on, että tuo koneen noususuunta taitaa olla väärin.


    • Anonyymi

      Jorma on paikassa R(J) = 57 j . Käytetään parametriä t jolloin kone on pisteessä tv kun parametrillä on arvo t. Kun t=0 pyörät irtoavat maassta, tämä on origo.
      l t v - R(J) l =l - 2t i - 5t j t k - 57 j l = sqrt(4 t^2 (5t 57)^2 t^2)
      Tämä neliöjuuri saa minimiarvon samassa pisteessä kuin juurrettavakin eli minimoidaan funktio
      f(t) = 30 t^2 570 t 3249
      f'(t) = 60 t 570 = 0 kun t =- 19/2
      Tällöin kone on pisteessä - 19/2 v ja sen korkeus siis - 19/2 eli kone on maan alla!
      Sinun v-vektorisi on virheellinen. Mutta laskutapa näkyy yllä olevasta.

      • Anonyymi

        Tai voidaan sanoa, että f(t) saa pienimmän arvon kun t = 0 jolloin koneen korkeus on 0 eli kun pyörät irtoavat maasta.


      • Anonyymi
        Anonyymi kirjoitti:

        Tai voidaan sanoa, että f(t) saa pienimmän arvon kun t = 0 jolloin koneen korkeus on 0 eli kun pyörät irtoavat maasta.

        Lisään vielä: sinun antamallasi suuntavektorilla kone lähtee suuntaan jossa se koko ajan etenee Jormasta. Se on siis häntä lähinnä lähtöhetkellä.


    • Anonyymi

      Kiitos avusta!

      Näemmä olikin mennyt vektorit sekaisin, Jormatehtävän vektori olikin -(sqrt)7 i (sqrt)13 j pii k, eli voipi olla että ei sitten enää lentele maan alla kun laittelee oikean vektorin.
      Kiitos!

      • Anonyymi

        Meillä on koneen suuntavektori: A = (-(sqrt)7 i (sqrt)13 j pii k)*c
        Tarkkailijan paikkavektori: B = 57 j
        Vektori tarkkailijasta koneeseen: C = x i y j z k.
        Ja yhtälöt:
        C = A - B
        A * C = 0
        Tuolla vektorilla sain 21,6 m korkeuden.


      • Anonyymi
        Anonyymi kirjoitti:

        Meillä on koneen suuntavektori: A = (-(sqrt)7 i (sqrt)13 j pii k)*c
        Tarkkailijan paikkavektori: B = 57 j
        Vektori tarkkailijasta koneeseen: C = x i y j z k.
        Ja yhtälöt:
        C = A - B
        A * C = 0
        Tuolla vektorilla sain 21,6 m korkeuden.

        Pistä nyt Jormalle joku pituus, kun hän kerran seisovillaan on.


      • Anonyymi

        1.
        R(t) = - t sqrt(7) i t sqrt(13) j t pii k
        R(J) = 57 j
        l R(1) l = sqrt(20 pii^2
        Kone on Jormaa lähinnä kun t = t1. R(J1) = R(J) / l R(J)l = j.
        Vektoreiden R(1) ja R(J1) välinen kulma = a.
        l R(t1) l = 57 cos(a) = 57 (R(1),R(J1) ) / (l R(1) l * l j l) =
        57 *sqrt(13) /(sqrt(20 pii^2) = 37,604
        R(t1) = 37,604 /sqrt(20 pii^2) * (- sqrt7) i sqrt(13) j pii k)
        Vektorin R(t1) - R(J) k-komponentti on 37,604 pii / sqrt(20 pii^2) =
        21,6.
        2.
        Minimoidaan f(t) = l R(t) - R(J) l ^2= l - t sqrt(7) i ( t sqrt(13) - 57) j t pii k l ^2 =
        7 t^2 13 t^2 57^2 - 114 sqrt(13) t t^2 pii^2 =
        (20 pii^2) t^2 - 114 sqrt(13) t 57^2
        f'(t) = (40 2 pii^2) t - 114 sqrt(13) = 0
        t1 = 114*sqrt(13)/(40 2 pii^2)
        Vektorin R(t1) - R(J) k-komponentti on 114 pii * sqrt(13) / (40 2 pii^2) = 21,6


      • Anonyymi
        Anonyymi kirjoitti:

        1.
        R(t) = - t sqrt(7) i t sqrt(13) j t pii k
        R(J) = 57 j
        l R(1) l = sqrt(20 pii^2
        Kone on Jormaa lähinnä kun t = t1. R(J1) = R(J) / l R(J)l = j.
        Vektoreiden R(1) ja R(J1) välinen kulma = a.
        l R(t1) l = 57 cos(a) = 57 (R(1),R(J1) ) / (l R(1) l * l j l) =
        57 *sqrt(13) /(sqrt(20 pii^2) = 37,604
        R(t1) = 37,604 /sqrt(20 pii^2) * (- sqrt7) i sqrt(13) j pii k)
        Vektorin R(t1) - R(J) k-komponentti on 37,604 pii / sqrt(20 pii^2) =
        21,6.
        2.
        Minimoidaan f(t) = l R(t) - R(J) l ^2= l - t sqrt(7) i ( t sqrt(13) - 57) j t pii k l ^2 =
        7 t^2 13 t^2 57^2 - 114 sqrt(13) t t^2 pii^2 =
        (20 pii^2) t^2 - 114 sqrt(13) t 57^2
        f'(t) = (40 2 pii^2) t - 114 sqrt(13) = 0
        t1 = 114*sqrt(13)/(40 2 pii^2)
        Vektorin R(t1) - R(J) k-komponentti on 114 pii * sqrt(13) / (40 2 pii^2) = 21,6

        Lisäys.
        3.
        Voisi myös käyttää sitä tietoa että sin(a) = lR1 x j l / l R1 l = sqrt((7 pii^2) / (20 pii^2) = 0,7515. Edellä saatu cos(a) = 0,6597 ja sin^(a) cos^2(a) = 1.
        Mutta samaan tulokseen tuo johtaa.
        Merkillinen arvo tuo pii suuntavektorin k-kompponenttina. Mitähän tehtävän laatija lie mokomalla meinannut?


    • Anonyymi

      Tuossa täytyy ottaa huomioon että kyseessä on pienkone. Ei siis mikään suurkone.
      Pienkoneita ovat esimerkiksi ruohonleikkuukone ja käsiporakone.
      Käsiporakoneen tai Makitan lentorata muistuttaa useimmiten jotain paraabelia.

    Ketjusta on poistettu 1 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Sannan kirja USA:n bestseller!

      "Congratulations to Sanna Marin's HOPE IN ACTION, officially a USA TODAY bestseller!" Kertoo Scribner. Mitäs persut tä
      Maailman menoa
      95
      10947
    2. Yritystuet 10 mrd. vuodessa, eli yrittäjäriski valtiolla kuten kommunismissa

      Pelkästään Viking Linen viinanhakuristeilyitä sponsoroidaan 20 miljoonalla eurolla vuosittain. Dieselin verotukikin on
      Yrittäjyys
      145
      10254
    3. Oikeistolainen luki Med mod att leda : en biografi

      ...ei tykänny Sanna Marinista
      Maailman menoa
      25
      8001
    4. Sture Fjäder haluaa tuensaajien nimet julki

      Kokoomuspoliitikko haluaa yli 800 euroa kuukaudessa tukia saavien nimet julki. Ehkä olisi syytä julkaista myös kuvat? h
      Maailman menoa
      177
      6454
    5. Metsäalan rikolliset

      Jokohan alkaa vähitellen kaatua kulissit näillä ihmiskauppaa harjoittavilla firmoilla.
      Sotkamo
      45
      5436
    6. Milloin viimeksi näit kaivattusi?

      Toimisitko nyt toisin kuin siinä tilanteessa teit?
      Ikävä
      73
      5021
    7. Ruotsalaistoimittaja: "Sanna Marinin saunominen saa minut häpeämään"

      Sanna Marinin kirja saa täyslaidallisen ruotsalaislehti Expressenissä perjantaina julkaistussa kolumnissa.....voi itku..
      Maailman menoa
      140
      4299
    8. Suomen kaksikielisyys - täyttä huuhaata

      Eivätkö muuten yksilöt pysty arvioimaan mitä kieliä he tarvitsevat? Ulkomaalaiselle osaajalle riittää Suomessa kielitai
      Maailman menoa
      19
      4183
    9. Työeläkeloisinta 27,5 mrd. per vuosi

      Tuo kaikki on pois palkansaajien ostovoimasta. Ja sitten puupäät ihmettelee miksei Suomen talous kasva. No eihän se kas
      Maailman menoa
      49
      3958
    10. Maahanmuuttajat torjuvat marjanpoiminnan - "emme ole rottia"

      Ruotsalaisen journalistin selvitys paljasti, miksi maahanmuuttajat kieltäytyvät työstä. Taustalla vaikuttavat kulttuuris
      Maailman menoa
      131
      3554
    Aihe