Reaaliluvut R määritellään seuraavasti, kun C tarkoittaa rationaalilukujen Cauchyn jonojen joukkoa:
R = {[(xn)] | (xn) kuuluu joukkoon C}
Reaaliluku [(xn)] on siis rationaalilukujen Cauchy-jonojen ekvivalenssiluokka. Mutta eikö ekvivalenssiluokka ole jonkin suuremman joukon osajoukko ja Cauchy-jono äärettömän pitkä lukujono. Miten jokin yksittäinen (reaali)luku, esimerkiksi luku 1, voi siis olla äärettömän pitkä lukujono ja mahdollisesti vielä lukujonojen joukon osajoukko? En ymmärrä. Osajoukko ja lukujono kuulostavat aivan eri asioilta kuin jokin yksittäinen luku. Voisiko joku avata, miten tämä ongelma selvitetään?
Reaalilukujen konstruointi rationaaliluvuista?
6
147
Vastaukset
- Anonyymi
Voit ajatella että "luku" = "kaikki jonot, jotka konvergoivat siihen". Mutta koska rationaalilukujonolla ei välttämättä ole rationaalista raja-arvoa vaikka sillä "pitäisi olla" raja-arvo, niin sen takia puhutaan Cauchy-jonoista. Reaalilukujen konstruktiossa juuri lisätään kaikki nämä puuttuvat raja-arvot.
- Anonyymi
Kts. Wikipedia (eng.) :Costruction of the real numbers.
Eiköhän asia sieltä sinulle selvinne.- Anonyymi
Tuli näppäilyvirhe. P.O.:...Construction....
- Anonyymi
Kiitos kummallekin vastaajalle. Asia alkaa pikku hiljaa selvenemään.
- Anonyymi
Voisinko esittää jatkokysymyksen: jos tutkitaan hyperreaalilukujen konstruointia reaaliluvuista, törmätään ensin käsitteisiin filtteri, ultrafiltteri ja vapaa ultrafiltteri. Filtteri toteuttaa 3 kappaletta ehtoja ja ultrafiltteri 4 kappaletta. Mutta mistä nämä ehdot on keksitty? Toisin sanoen, onko nämä ehdot johdettu järjestelmällisesti ja ymmärrettävästi jostakin yksinkertaisemmista ehdoista?
Seuraavassa artikkelissa on mainittu asiasta jotain (katso kohdasta "An intuitive approach to the ultrapower construction", ominaisuudet 1-3 ja 1-4 artikkelin loppuosassa). En vain oikein käsitä, miten nämä 4 ominaisuutta on johdettu:
https://en.wikipedia.org/wiki/Hyperreal_number
1. From two complementary sets one belongs to U
2. Any set having a subset that belongs to U, also belongs to U.
3. An intersection of any two sets belonging to U belongs to U.
4. Finally, we do not want the empty set to belong to U because then everything would belong to U, as every set has the empty set as a subset.
Any family of sets that satisfies (2–4) is called a filter (an example: the complements to the finite sets, it is called the Fréchet filter and it is used in the usual limit theory). If (1) also holds, U is called an ultrafilter- Anonyymi
No,tuossa Wikipedia-artikkelissa ei kyllä konstruoida hyperreaalilukuja noin. Ihan artikkelin lopussa mainitaan erikoistapsaus, jossa esiintyvät "ultrapowers" ja "ultrafilters".
Oletkohan sinä nousemassa puuhun latvasta etkä tyvestä?
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Stubb jo paljon tunnetumpi kuin kaikki persut yhteensä
Nyt on aika ottaa mittaa tunnettavuudesta, herrat ja narrit! Joku tuolla toisessa ketjussa väitti, että "persujen rivimi6210125Persut hommasivat Suomeen 35 000 pientä lasta v. 2015
Onko Riikka Purra nyt tavoittelemassa tätä samaa historiallista persujen utopiaa? Purram kaksinaamaisessa pelissä vaadit166876Miksi persuilla ei ole firmoja?
Kuten vasemmisstolaisilla, esim. Sannalla MA\PI. Eikö ole aika erikoista?736438Persu Keskisarja on politiikan Uuno Turhapuro
Asiantuntija luonnehtii Keskisarjaa Trumpin ajan Turhapuroksi, joka ärsyttää kokoomusta. – Keskisarjan känni-imago j856164Purran tuhoja tuskin saadaan koskaan korjatuksikaan
Purra on aiheuttanut Suomen taloudelle karmaisevat tuhot. Sen lisäksi Purra on ajanut myös suuren osan Suomen kansasta k654445Miksi vasemmistolaiset eivät omista yhtään firmaa?
Vasemmistolaiset eivät omista yhtään firmaa joka työllistäisi ihmisiä. Miksi? No siksi, että jos vasemmistolainen perus324313Sanna valittiin Euroopan huonoimmaksi pääministeriksi
Sannan kaudella Suomi oli ainut maa missä bkt laski. Kannattaa huomata, että luvut valitsi Sannan huonoimmaksi. Ihmiset114312Oikeistohallitusten aikaan saannokset.
Holkerin touhujen seurauksena lama. Aho jatkoi tuhoa osaamattomuudellaan. Katainen ja alkoi talouden alamäki. Sipilä ja464150Tutkielma Marinin hallituksen epäonnistumisista rankkaa luettavaa
Marinin hallituksen epäonnistumiset voi tiivistää negatiivisessa sävyssä seuraavasti: Hallitus teki useita vakavia virh564050Persujen kaksoisstandardit: Räsäsen uhkailu paha, Virran uhkailu hyvä
Tässä taas nähdään kuinka kaksinaamaista porukkaa persut ovat. Mitäs persut tähän?444038