Ajatellaanpa koaksiaalikaapeli, joka on molemmista päistään avoin ja jännite sisä- ja ulkojohtimen välillä on 0 volttia.
Sitten toiseen päähän kytketään esim. voltin tasajännite. Toisin kuin moni luulee, tämä pitkä "kondensaattori" ei lataudu välittömästi. Ilmiö johtuu siitä, että koaksiaalikaapelin johtimissa on induktanssia (myös resistanssia, mutta se oletetaan usein nollaksi). Induktanssi rajoittaa kaapelin ottamaa virtaa.
Voltin tasajännitteellä kaapeli latautuu 20 mA:n virralla eli kaapeli on 50-ohminen.
Jos voltin tasajännitelähteen sisäinen resistanssi on tuo samat 50 ohmia, kaapelin kytkentäpisteessä jännite on latausvaiheessa 0,5 volttia ja kaapeli latautuu 0,5 voltin jännitteellä. Kun kaapeli on latautunut toiseen päähän asti, heijastuu sieltä 0,5 voltin aalto takaisin eli kaapelin jännite nousee 1 volttiin alkaen avoimesta päästä ja viimeisenä syöttävästä päästä. Lopputilanteessa koaksiaalikaapelin jännite on 1 voltti (olettaen että eristeen konduktanssi on nolla) ja virta 0.
Ilmiö on tietysti niin nopea, ettei sitä ole mahdollista mitata yleismittarilla. Jos olisi ideaalista kaapelia 200 000 km tai mieluummin 2 000 000 km, ilmiötä olisi helpompi demota yleismittarilla.
Miten käy, jos kaapelin toinen pää onkin oikosulussa (0 ohmia)?
Koaksiaalikaapeli on kuin pitkä sylinterikondensaattori, jossa on sisäistä induktanssia.
13
195
Vastaukset
- Anonyymi
Kondensaattori ei lataudu "välittömästi".
- Anonyymi
Niin, ei se induktanssista vain johdu ettei lataudu välittömästi kuten aloituksessa väitetään.
- Anonyymi
Anonyymi kirjoitti:
Niin, ei se induktanssista vain johdu ettei lataudu välittömästi kuten aloituksessa väitetään.
https://www.digikey.fi/fi/resources/conversion-calculators/conversion-calculator-reactance
Kalcutellaann - Anonyymi
😋😋😋😋😋😋😋😋😋😋
😍 Nymfomaani -> https://l24.im/ecC7ux#kissagirl21
🔞❤️💋❤️💋❤️🔞❤️💋❤️💋❤️🔞
- Anonyymi
No jos koaksiaalin impedanssi on 50 ohmia, niin mikä on se taajuus jolla ohmiarvo toteutuu. Induktanssin impedanssihan on taajuudesta riippuva.
- Anonyymi
Häviöttömän koaksiaalikaapelin ominaisimpedanssi on neliöjuuri( l/c ) missä
l = ominaisimpedanssi [ l ] = H/m
c = ominaiskapasitanssi [ c ] = F/m.
Ominaisimpedanssi ei siis riipu taajuudesta vaan on sen suhteen vakio. - Anonyymi
Anonyymi kirjoitti:
Häviöttömän koaksiaalikaapelin ominaisimpedanssi on neliöjuuri( l/c ) missä
l = ominaisimpedanssi [ l ] = H/m
c = ominaiskapasitanssi [ c ] = F/m.
Ominaisimpedanssi ei siis riipu taajuudesta vaan on sen suhteen vakio.Sotket asioita, impedanssin yksikkö on ohmi ja induktanssin yksikkö on henry (H).
Ja impedanssi on nimenomaan taajuudesta riippuva. - Anonyymi
Anonyymi kirjoitti:
Sotket asioita, impedanssin yksikkö on ohmi ja induktanssin yksikkö on henry (H).
Ja impedanssi on nimenomaan taajuudesta riippuva.Häviöttömän koaksiaalikaapelin induktanssi ja kapasitanssi per pituusyksikkö eivät riipu taajuudesta, kunhan aallonpituus kaapelissa on paljon suurempi kuin kaapelin halkaisija (TEM eli Poikittainen Sähkö- ja Magneettikenttä moodi). Silloin myös koaksiaalin ominaisimpedanssi Z0 on taajuudesta riipumaton.
Häviöllisessä johteessa skin effect aiheuttaa sen, että induktanssi riippuu jonkin verran taajuudesta. Matalalla taajuudella virta kulkee koko keskijohtimen poikkipinta-alaa käyttäen kun taas korkeammilla taajuuksilla käytössä on vain johtimen ulkopinta. Johtimen sisäinen induktanssi näkyy siksi lähinnä matalilla taajuuksilla. - Anonyymi
Anonyymi kirjoitti:
Häviöttömän koaksiaalikaapelin induktanssi ja kapasitanssi per pituusyksikkö eivät riipu taajuudesta, kunhan aallonpituus kaapelissa on paljon suurempi kuin kaapelin halkaisija (TEM eli Poikittainen Sähkö- ja Magneettikenttä moodi). Silloin myös koaksiaalin ominaisimpedanssi Z0 on taajuudesta riipumaton.
Häviöllisessä johteessa skin effect aiheuttaa sen, että induktanssi riippuu jonkin verran taajuudesta. Matalalla taajuudella virta kulkee koko keskijohtimen poikkipinta-alaa käyttäen kun taas korkeammilla taajuuksilla käytössä on vain johtimen ulkopinta. Johtimen sisäinen induktanssi näkyy siksi lähinnä matalilla taajuuksilla.Sekoilet edelleen, puhut induktanssista. Impedanssista oli kyse.
- Anonyymi
Anonyymi kirjoitti:
Sekoilet edelleen, puhut induktanssista. Impedanssista oli kyse.
Lue kirjasta niin ymmärrät. Takerruit aiemman kirjoittajan virheeseen.
Koksun kapasitanssi C per pituusyksikkö on taajuudesta riippumaton. Koksun induktanssi L per pituusyksikkö on lähes vakio vaikkakin hieman kasvaa hyvin matalilla tasjuuksilla keskijohtimen itseisinduktanssin vuoksi. Koksun ominaisimpedanssi Z0=sqrt(L/C) on korkeilla taajuuksilla vakio mutta hyvin vähän kasvaa matalilla taajuuksilla. - Anonyymi
Anonyymi kirjoitti:
Lue kirjasta niin ymmärrät. Takerruit aiemman kirjoittajan virheeseen.
Koksun kapasitanssi C per pituusyksikkö on taajuudesta riippumaton. Koksun induktanssi L per pituusyksikkö on lähes vakio vaikkakin hieman kasvaa hyvin matalilla tasjuuksilla keskijohtimen itseisinduktanssin vuoksi. Koksun ominaisimpedanssi Z0=sqrt(L/C) on korkeilla taajuuksilla vakio mutta hyvin vähän kasvaa matalilla taajuuksilla.Jankutat edelleenkin asian vierestä. Jokainen tietää että induktanssi, kapasitanssi ja resistanssi ovat komponentin fyysisistä ominaisuuksista riippuvia suureita.
- Anonyymi
Kyllä impedanssin pystyy määrittelemään yleismittarillakin. Yleensä mitataan johtimen VSWR-arvo eli takaisin heijastuneen aallon suhde, jonka avulla saadaan tehtyä johtimen sovitus eli valitulla taajuudella sovitus esim. 50 ohmiin. Johtimen nimellinen 50 ohmia ei yleensä ole antennin impedanssi. Lähetysantenneilla sovitus on lähes pakko mitata ettei pääteaste kärähdä. Vastaanotossa sovituksen tekeminen laskemalla yleensä riittää, koska tehot ovat varsin pieniä. Sovitus tehdään joko haja(kenttä)-komponenteilla tai tavanomaisilla. Parempaan tulokseen päästään hajakomponenteilla, mutta niiden käyttäminen on haastavampaa kuin keskitettyjen komponenttien: Rf-taajuuksilla kun ei ole pelkästään kapasitanssia tai pelkästään induktanssia komponenteilla vaan niitä on mallinnettava RCL-piireinä.
- Anonyymi
Jos 200000 km pituisen häviötömän koaksiaalikaapelin (nopeuskerroin 0.66) toinen pää on oikosulussa niin kaapeliin lähtevän pulssin nouseva reuna saavuttaa oikosulun vasta sekunnin kuluttua jännitteen kytkemisestä. Oikosulun heijastuskerroin Γ on -1 joten heijastunut aalto on amplitudiltaan sama mutta kääntynyt negatiiviseksi. Kahden sekunnin kuluttua tuo heijastunut aalto saavuttaa lähtöpisteensä jolloin aallot kumoavat toisensa ja kaapelin sisääntulossa jännite on nolla.
Todellisessa elämässä kaapelit eivät ole häviöttömiä joten aalto vaimenee edetessään RC-aikavakion vuoksi. Matalilla taajuuksilla monet koaksiaalikaapelit ovat lisäksi dispersiivisiä siksi, että niiden keskijohdon resistanssi R aiheuttaa paljon enemmän häviöitä kuin mitä häipyy eristeen dielektrisiin häviöihin. Yleensä siirtolinjayhtälöissä oletuksena on että nämä häviöt ovat samansuuruisia. Network analyzerillä katsottuna tulee sitten matalilla taajuuksilla yllättäviä tuloksia impedansseille verrattuna siihen mitä oppikirjasta katsottu väärä kaava kertoo minkä itsekin olen karvaasti kokenut.
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electro-Optics/Book:_Electromagnetics_I_(Ellingson)/03:_Transmission_Lines
Entisaikojen puhelinlangat olivat juuri tälläisiä liian resistiivisiä siirtolinjoja ja niiden kanssa jouduttiin virittelemään ties mitä pupinointikeloja jotta toimisivat oikein eikä vaimennusvääristymä pilaisi kaapelin toimintaa.
Jos haluat leikkiä pitkillä siirtolinjoilla ja katsoa mitä tapahtuu niin ota käyttöön ohjelma LTSpice. Siinä on mahdollisuus virtuaalisella oskilloskoopilla katsoa miten elektroniset kytkennät toimivat ja yksi tarjolla oleva komponentti on häviötön siirtolinja... Suosittelen tätä!
https://www.analog.com/en/resources/design-tools-and-calculators/ltspice-simulator.html
Itse tykkään enemmän tuon spice - simulaattorin vanhemmasta versiosta LTSpice XVII kun uudessa on uusia bugeja.
Ketjusta on poistettu 5 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 372421
Mies kateissa Lapualla
Voi ei taas! Toivottavasti tällä on onnellinen loppu. https://poliisi.fi/-/mies-kateissa-lapualla362416- 951731
Olen aina vain
Ihmeissäni siitä että oletko niin tosissani minusta? Mitä muut ajattelisi meistä?511300Joo nyt mä sen tajuan
Kaipaan sua, ei sitä mikään muuta ja olet oikea❤️ miksi tämän pitää olla niin vaikeaa?861281Olipa ihana rakas
❤️🤗😚 Toivottavasti jatkat samalla linjalla ja höpsöttelykin on sallittua, kunhan ei oo loukkaavaa 😉 suloisia unia kau51175Kansanedustaja Teemu Keskisarja ei osallistu Linnan juhliin vaan natsikulkueeseen
Kerääkö poliisi taas natsiliput pois osallistujilta?2671029- 52976
Kumpi teistä rakastui ensin?
Sinä vai kaipaamasi henkilö (jos siis tunteet ovat molemminpuolisia)? Tai jos kyse ei ole vielä rakkaudesta, niin kumpi36747- 27740