Absoluuttinen integraali?

Anonyymi-ap

Olen opiskellut viime aikoina tensorilaskentaa ja nyt tutkimisen aiheena ovat tensorit klassillisessa mekaniikassa. Kiihtyvyys on siellä määritelty absoluuttisena derivaattana pitkin käyrää, mutta mikä on absoluuttisen derivaatan käänteisoperaatio? Absoluuttinen integraali, jos sellaista on edes olemassa? Googlaamalla ei löydy vastausta.

8

369

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Yritätkö päteä täällä? Säälittävää.

    • Anonyymi

      Hämmentävää. Mitä tarkoitat absoluuttisella derivaatalla? Anna esimerkki 3D-käyrästä ja sen absoluuttisesta derivaatasta. Tarkoitatko derivvaatta jossakin käyrän pisteessä vai käyrän derivaattafunktiota?

      • Anonyymi

        Kyse on tensorin derivoimisesta. Yleisperiaate tällöin on, että jos derivoidaan tensoria kahteen kertaan (kuten kiihtyvyyttä mekaniikassa), täytyy lopputuloksen olla myöskin tensori. Tämä karsii pois heti "tavanomaisen" derivaatan ja "tavanomaisen" osittaisderivaatan. Sen sijaan kovariantti derivaatta, johon absoluuttinen derivaatta perustuu, tuottaa lopputuloksena tensorin, joten tavanomaisen derivaatan luonnollinen yleistys on absoluuttinen derivaatta.

        Valitettavasti tällä sivustolla ei oikein voi antaa laskentakaavoja, koska matemaattisen aineiston tekstinkäsittelymahdollisuudet ovat täällä erittäin rajalliset.

        Vihdoin onnistuin tänä iltana löytämään jotain netistä hakusanalla "absolute derivatives":

        https://cecs.wright.edu/~sthomas/chap15reading.pdf

        Tässä helpohkossa aineistossa on 8 kappaletta sivuja ja se lienee osa jostakin mekaniikan oppikirjasta. Suomalaisissa oppilaitoksissa käytetään konetekniikan (eli mekaanisen tekniikan) oppikirjana ilmeisesti Tapio Salmen oivallisia teoksia, ja siellä puhutaan absoluuttisesta havaitsijasta, mutta kyse lienee samasta asiasta kuin absoluuttinen derivaatta. Toinen mainio teos, johon alkuperäinen kysymykseni liittyi, on David C. Kay Tensor Calculus. Siellä ongelmasta käytetään nimeä "absolute differentiation along a curve". (mainio teos, yli 200 sivua ja hinta vain alle 20 euroa silloin kun sen kymmenkunta vuotta sitten hankin).

        Mutta kuten sanottu, löysin jo netistä jotain tietoja, joita pitää kuitenkin vielä hieman punnita.


      • Anonyymi
        Anonyymi kirjoitti:

        Kyse on tensorin derivoimisesta. Yleisperiaate tällöin on, että jos derivoidaan tensoria kahteen kertaan (kuten kiihtyvyyttä mekaniikassa), täytyy lopputuloksen olla myöskin tensori. Tämä karsii pois heti "tavanomaisen" derivaatan ja "tavanomaisen" osittaisderivaatan. Sen sijaan kovariantti derivaatta, johon absoluuttinen derivaatta perustuu, tuottaa lopputuloksena tensorin, joten tavanomaisen derivaatan luonnollinen yleistys on absoluuttinen derivaatta.

        Valitettavasti tällä sivustolla ei oikein voi antaa laskentakaavoja, koska matemaattisen aineiston tekstinkäsittelymahdollisuudet ovat täällä erittäin rajalliset.

        Vihdoin onnistuin tänä iltana löytämään jotain netistä hakusanalla "absolute derivatives":

        https://cecs.wright.edu/~sthomas/chap15reading.pdf

        Tässä helpohkossa aineistossa on 8 kappaletta sivuja ja se lienee osa jostakin mekaniikan oppikirjasta. Suomalaisissa oppilaitoksissa käytetään konetekniikan (eli mekaanisen tekniikan) oppikirjana ilmeisesti Tapio Salmen oivallisia teoksia, ja siellä puhutaan absoluuttisesta havaitsijasta, mutta kyse lienee samasta asiasta kuin absoluuttinen derivaatta. Toinen mainio teos, johon alkuperäinen kysymykseni liittyi, on David C. Kay Tensor Calculus. Siellä ongelmasta käytetään nimeä "absolute differentiation along a curve". (mainio teos, yli 200 sivua ja hinta vain alle 20 euroa silloin kun sen kymmenkunta vuotta sitten hankin).

        Mutta kuten sanottu, löysin jo netistä jotain tietoja, joita pitää kuitenkin vielä hieman punnita.

        Vielä lisäys: kaiken lähtökohtana on vaatimus, että fysikaaliset kaavat, joissa käsitellään vektoreita, täytyy olla käytetystä koordinaatistosta riippumattomia. On siis löydettävä yleiset, koordinaatistosta riippumattomat, kaavat esimerkiksi nopeudelle, kiihtyvyydelle, voimalle jne.

        Koska mainitsemani teoksen Tensor Calculus sisällössä ei esiinny lähes LAINKAAN integraaleja, vaan pelkkiä osittaisderivaattoja ja "tavallisia" derivaattoja (vert. termofysiikan oppikirjat), halusin alun perin tietää, voidaanko löytää esim. nopeus tai paikka integroimalla, kun tunnetaan kiihtyvyys. Nyt lähes joka tilanteessa on lähdetty liikkeelle paikkakoordinaateista ja komponenteista, joita on osittaisderivoitu tai derivoitu "tavanomaisesti". Ilmeisesti vastakkaiseen suuntaan kulkeminen eli integrointi hoituu "tavanomaisesti" ilman sen kummempia laskukaavoja.


      • Anonyymi
        Anonyymi kirjoitti:

        Kyse on tensorin derivoimisesta. Yleisperiaate tällöin on, että jos derivoidaan tensoria kahteen kertaan (kuten kiihtyvyyttä mekaniikassa), täytyy lopputuloksen olla myöskin tensori. Tämä karsii pois heti "tavanomaisen" derivaatan ja "tavanomaisen" osittaisderivaatan. Sen sijaan kovariantti derivaatta, johon absoluuttinen derivaatta perustuu, tuottaa lopputuloksena tensorin, joten tavanomaisen derivaatan luonnollinen yleistys on absoluuttinen derivaatta.

        Valitettavasti tällä sivustolla ei oikein voi antaa laskentakaavoja, koska matemaattisen aineiston tekstinkäsittelymahdollisuudet ovat täällä erittäin rajalliset.

        Vihdoin onnistuin tänä iltana löytämään jotain netistä hakusanalla "absolute derivatives":

        https://cecs.wright.edu/~sthomas/chap15reading.pdf

        Tässä helpohkossa aineistossa on 8 kappaletta sivuja ja se lienee osa jostakin mekaniikan oppikirjasta. Suomalaisissa oppilaitoksissa käytetään konetekniikan (eli mekaanisen tekniikan) oppikirjana ilmeisesti Tapio Salmen oivallisia teoksia, ja siellä puhutaan absoluuttisesta havaitsijasta, mutta kyse lienee samasta asiasta kuin absoluuttinen derivaatta. Toinen mainio teos, johon alkuperäinen kysymykseni liittyi, on David C. Kay Tensor Calculus. Siellä ongelmasta käytetään nimeä "absolute differentiation along a curve". (mainio teos, yli 200 sivua ja hinta vain alle 20 euroa silloin kun sen kymmenkunta vuotta sitten hankin).

        Mutta kuten sanottu, löysin jo netistä jotain tietoja, joita pitää kuitenkin vielä hieman punnita.

        Derivaatta on aina eksakti funktio jo määritelmänsä mukaisesti, integraalissa vakiot määrittävät funktion ympäristön.
        Tensori on nimitys tietyille ominaisuuksille, jolla ei ole mitään vaikutusta itse matematiikkaan.


        Kyllä tämäkin alusta, kuten kaikki tekstieditorityyppiset mahdollistaa myös matemaattiset esitykset.


      • Anonyymi
        Anonyymi kirjoitti:

        Vielä lisäys: kaiken lähtökohtana on vaatimus, että fysikaaliset kaavat, joissa käsitellään vektoreita, täytyy olla käytetystä koordinaatistosta riippumattomia. On siis löydettävä yleiset, koordinaatistosta riippumattomat, kaavat esimerkiksi nopeudelle, kiihtyvyydelle, voimalle jne.

        Koska mainitsemani teoksen Tensor Calculus sisällössä ei esiinny lähes LAINKAAN integraaleja, vaan pelkkiä osittaisderivaattoja ja "tavallisia" derivaattoja (vert. termofysiikan oppikirjat), halusin alun perin tietää, voidaanko löytää esim. nopeus tai paikka integroimalla, kun tunnetaan kiihtyvyys. Nyt lähes joka tilanteessa on lähdetty liikkeelle paikkakoordinaateista ja komponenteista, joita on osittaisderivoitu tai derivoitu "tavanomaisesti". Ilmeisesti vastakkaiseen suuntaan kulkeminen eli integrointi hoituu "tavanomaisesti" ilman sen kummempia laskukaavoja.

        Mihin tässä tensoreita tarvitaan?
        Jos meilläon käyrä a(t) niin sen nopeusvektori on a' (t) ja kiihtyvyys onn a''(t).


      • Anonyymi
        Anonyymi kirjoitti:

        Mihin tässä tensoreita tarvitaan?
        Jos meilläon käyrä a(t) niin sen nopeusvektori on a' (t) ja kiihtyvyys onn a''(t).

        Nopeus on kyllä aina tuttua muotoa eli v(i) = dx(i)/dt, missä x(i) tarkoittaa vektorin i:nnettä komponenttia.

        Mutta kun x(i):tä derivoidaan toisen kerran (eli kun lasketaan kiihtyvyys) saadaan yhtälö:

        a(i)=d^2x(i)/(dt)^2 + lisätermi

        Tässä lisätermi sisältää summalausekkeen, jossa esiintyy toisen lajin Christoffelin symboli (saadaan yhtälö, joka on samaa muotoa kuin geodeettisen käyrän yhtälö). Kun tutkittava koordinaatisto on karteesinen eli kohtisuora ja suoraviivainen, menee tämä lisätermi nollaksi ja saadaan tutut kaavat, mutta kun käytetään esimerkiksi sylinterikoordinaatistoa, pitää lisätermi laskea ja sijoittaa kiihtyvyyden kaavaan.


      • Anonyymi
        Anonyymi kirjoitti:

        Nopeus on kyllä aina tuttua muotoa eli v(i) = dx(i)/dt, missä x(i) tarkoittaa vektorin i:nnettä komponenttia.

        Mutta kun x(i):tä derivoidaan toisen kerran (eli kun lasketaan kiihtyvyys) saadaan yhtälö:

        a(i)=d^2x(i)/(dt)^2 lisätermi

        Tässä lisätermi sisältää summalausekkeen, jossa esiintyy toisen lajin Christoffelin symboli (saadaan yhtälö, joka on samaa muotoa kuin geodeettisen käyrän yhtälö). Kun tutkittava koordinaatisto on karteesinen eli kohtisuora ja suoraviivainen, menee tämä lisätermi nollaksi ja saadaan tutut kaavat, mutta kun käytetään esimerkiksi sylinterikoordinaatistoa, pitää lisätermi laskea ja sijoittaa kiihtyvyyden kaavaan.

        Se lisätermi ei ole osa derivaattaa, vaan suuntakorjaus kaarevaan koordinaatistoon.

        Sama on helpompi ymmärtää, kun valitsee muuttujaksi kulman, lineaarisen nopeuden muutoksen sijaan.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Janne Ahonen E R O A A

      Taas 2 lasta jää vaille ehjää perhettä!
      Kotimaiset julkkisjuorut
      187
      3796
    2. Tekisi niin mieli laittaa sulle viestiä

      En vaan ole varma ollaanko siihen vielä valmiita, vaikka halua löytyykin täältä suunnalta, ja ikävää, ja kaikkea muuta m
      Ikävä
      88
      1732
    3. Miksi ihmeessä?

      Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek
      Ateismi
      28
      1462
    4. Ootko huomannut miten

      pursuat joka puolelta. Sille joka luulee itsestään liikoja 🫵🙋🏻‍♂️
      Ikävä
      165
      1342
    5. Erika Vikman diskattiin, tilalle Gettomasa ja paluun tekevä Cheek

      Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek https://www.rumba.fi/uut
      Maailman menoa
      23
      1118
    6. Pitääkö penkeillä hypätä Martina?

      Eivätkö puistonpenkit ole istumista varten.Ei niitä kannata liata hyppäämällä koskaa likaantuvat eikä siellä kukaan niit
      Kotimaiset julkkisjuorut
      203
      1087
    7. Kuinka kauan

      Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?
      Ikävä
      92
      1047
    8. Kerropa ESA miten kävi tuomioiden

      Osaako ESA kertoa miten haukkumasi kunnanhallituksen kävi.
      Puolanka
      35
      1031
    9. Maikkarin tentti: Orpo jälleen rauhallinen ja erittäin hyvä, myös Purra oli hyvä

      Lindtman ja Kaikkonen oli kohtalaisia, sen sijaan punavihreät Koskela ja Virta olivat taas heikkoja. Ja vastustavat jalk
      Maailman menoa
      125
      994
    10. Milli-helenalla ongelmia

      Suomen virkavallan kanssa. Eipä ole ihme kun on etsintäkuullutettu jenkkilässäkin. Vähiin käy oleskelupaikat virottarell
      Kotimaiset julkkisjuorut
      164
      837
    Aihe