fermatin kuuluisa lause

fermatti

Moi matematiikan opiskelijat ja varsinkin tytöt, jotka tuntuvat olevan fiksumpia matematiikassa. Mistä linkistä löytäisin fermat`n kuuluisan todistuksen eli suuren lauseen selkokielellä googlesta. Olen vain tavallinen insinööri enkä juuri tiedä matikasta kuin perusintegroinnit, mutta olisi hauska nähdä se suuri todistus ihan tietokoneella. Sehän lienee noin 100 sivuinen pimaska pelkkää matematiikan symboleita, mutta ihan vaan haluaisin hämmästellä sitä valtavaa työmäärää, joka siihen on mennyt 7-8 vuoden aikana.

6

443

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • algebrikko

      Fermat ei todistanut lausettaan, vaan sen teki Andrew Wiles. Todistus löytyy osoitteesta http://math.stanford.edu/~lekheng/flt/wiles.pdf Tuo on käsittääkseni ainoa validi todistus lauseelle ja jos sen haluaa selkokieliseksi, siinä joutuu opettelemaan aika paljon matikkaa.

    • Muistelen

      Joskus nähneeni dokumentin todistelusta, ja vähäisen matematiikan tuntemukseni perusteella sain käsityksen että jokin japanilainen (ehkä) matemaatikko oli suuren työn jälkeen onnistunut todistamaan että kaikki elliptiset käyrät ovat modulaarisia ja Wiles keskittyi todistamaan, että Fermaatin iso lause on elliptinen.
      Wiles taisi matkan varrella julkaista useammankin kerran todistuksensa arvioitavaksi ja todetuksi virheelliseksi, ennenkuin onnistui lopulta.

      http://fi.wikipedia.org/wiki/Taniyaman–Shimuran_lause

      Fermat huhun mukaan oli itse keksinyt lauseelleen todistuksen, ylläolevan kaltainen se ei varmastikaan ollut.

      • algebrikko

        Ei se niin mennyt. Ribet todisti, että modulaarisuuslauseesta seuraa Fermat'n lause. Sitten Wiles huomasi, että riittää osoittaa lause on voimassa puolivakaille elliptisille käyrille, jonka hän lopulta todisti. Lauseet eivät ole modulaarisia, mutta jotkut käyrät ovat. Itse en ole elliptisten tai modulaaristen käyrien asiantuntija, joten tähän kannattaa suhtautua pienellä varauksella.


    • Femat huijasi..

      Fermat keksi hienon todistuksen kun n=4, ja ilmeisesti kuvitteli että
      myös muut n arvot menisivät yhtä helposti.

      Fermatin lause saadaan todistettua, kun osoitetaan lause todeksi kun
      n on pariton alkuluku tai 4. Ja tuo n=4 todistus löytynee kaikista lukuteorian
      alkeita esittelevistä kirjoista.

      Voihan olla että Fermat todellakin oivalsi jonkin ihmeellisen tavan mutta se
      on epäuskottavaa.

      • ????

        Asiaan löysästi liittyen tässä Stieg Larssonin Millenium-trilogiassa tätä suurta lausetta, siksi sitä siinä nimitetään vaikkakin täysin väärin, raahataan mukana kahdessa viiimeisessä osassa. Kirjan päähenkilö, jonka nimeä en tähän hätään muista, myös keksii tuon saman minkä Fermatkin. Ei tietenkään paljasta hänkään sitä todistusta.


    • amatöörimatikisti

      Minusta Takeshi Saito on kirjoittanut ihan hyvän kirjan "Fermat's Last Theorem Basic Tools". Takakansi väittää, että todistus annetaan yksityiskohtaisesti, mutta siinä on paljon skipattuja todistuksia. Lopussa on kuitenkin lähdeluettelo, jossa on 56 viitettä enimmäkseen artikkeleihin mutta myös joihinkin kirjoihin. Kirjasta on tulossa jatko-osa, "Fermat's Last Theorem Basic Tools: The Proof" joka ilmeisesti vie todistuksen loppuun. Todistuksen omaksuminen ei kuitenkaan onnistu insinööritiedoin, vaan joutuu tekemään aika paljon duunia, jotta todistukset saa palautettua ZFC:hen asti.

      Todistuksen idea on seuraava. Olkoon yhtälö A^n B^n=C^n. FLT on voimassa tapauksissa, joissa eksponentti n on 3 tai 4, joten tarkastellaan tapauksia, joissa n on vähintään 5 ja alkuluku. Voidaan olettaa, että A, B ja C ovat keskenään jaottomia, 4|C 1:n ja 2|B:n. Tarkastellaan elliptistä käyrää E_{C^l,B^l}, jonka määrittelee yhtälö y^2=x(x-C^l)(x-B^l). Jos Fermat'n suurella lauseella olisi nollasta poikkeva ratkaisu kun n on vähintään viisi, on E:n oltava modulaarinen, ja l-torsioalkioiden ryhmä E[l] on modulaarinen ja tasoa 2. Toisaalta ei ole olemassa nollasta poikkeavaa modulimuotoa, jonka taso on 1 tai 2. Tämä on ristiriita.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. 6 kW saunan lämmityksestä kohta 10 euron lisämaksu / kerta

      Kokoomuslainen sähköyhtiöiden hallitsema Energiavirasto ehdottaa 5 kW:n rajaa, jonka ylittämisestä tulee lisämaksu. Tark
      Maailman menoa
      205
      6578
    2. Minja jytkyttää vas.liiton kannatusta ylöspäin

      Alkaa raavaat duunarimiehetkin palaamaan vasemmistoliiton kannattajiksi. Eduskunnassahan on vain kaksi työntekijöiden p
      Maailman menoa
      279
      4506
    3. "Mitä sä nainen tuot sitten pöytään" ?

      Jos mies provaidaa ja suojelee... Pitääkö miesten kysyä tuollaisia?
      Ikävä
      142
      3585
    4. Duunarit hylkäsivät vasemmistoliiton, siitä tuli feministinaisten puolue

      Pääluottamusmies Jari Myllykoski liittyi vasemmistoliittoon, koska se oli duunarien puolue. Sitä samaa puoluetta ei enää
      Maailman menoa
      110
      3403
    5. Ekologinen kommunismi tulee voittamaan fossiilikapitalismin

      Kiina on mahtitekijä uusiutuvien energialähteiden kehityksessä, ja Trump osoitus viimeisestä öljyn perään itkemisestä, m
      Maailman menoa
      61
      3396
    6. Mies, kerro minulle vielä jotakin aivan uniikkia

      ja ainutlaatuista minkä vain me kaksi voisimme ymmärtää jos olemme sen kokeneet ja eläneet, jotta ihan varmasti tietäisi
      Tunteet
      49
      2866
    7. Hyviäkin uutisia tulossa, hallinto-oikeus asettaa toimeenpanokieltoon

      Hyvinvointitalon työmaa pysähtyy. Rillankivi+energia ja vesi kytkyrahanpesu stoppaa. Tytäryhtiöiden hallitusjäsenet+kon
      Pyhäjärvi
      254
      2539
    8. Oikeistopuolueiden kannatus vain 37,8 %, vasemmiston 43,0 %

      Keskustaan jää 17,4 prosenttia ja loput ovat sitten mitä ovat. Mutta selvästikin Suomen kansa on vasemmalle kallellaan.
      Maailman menoa
      75
      2427
    9. Tiedän ettei

      Meistä mitään tule. Toinen oli sinulle tärkeämpi
      Ikävä
      25
      2366
    10. Gallup: Mikä on ollut mielestäsi paras tv-sarja ikinä?

      Gallup: Mikä on ollut mielestäsi paras tv-sarja ikinä? Onko se joku suomalainen viihdepläjäys, brittirikossarja, amerikk
      Tv-sarjat
      101
      1941
    Aihe