fermatin kuuluisa lause

fermatti

Moi matematiikan opiskelijat ja varsinkin tytöt, jotka tuntuvat olevan fiksumpia matematiikassa. Mistä linkistä löytäisin fermat`n kuuluisan todistuksen eli suuren lauseen selkokielellä googlesta. Olen vain tavallinen insinööri enkä juuri tiedä matikasta kuin perusintegroinnit, mutta olisi hauska nähdä se suuri todistus ihan tietokoneella. Sehän lienee noin 100 sivuinen pimaska pelkkää matematiikan symboleita, mutta ihan vaan haluaisin hämmästellä sitä valtavaa työmäärää, joka siihen on mennyt 7-8 vuoden aikana.

6

445

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • algebrikko

      Fermat ei todistanut lausettaan, vaan sen teki Andrew Wiles. Todistus löytyy osoitteesta http://math.stanford.edu/~lekheng/flt/wiles.pdf Tuo on käsittääkseni ainoa validi todistus lauseelle ja jos sen haluaa selkokieliseksi, siinä joutuu opettelemaan aika paljon matikkaa.

    • Muistelen

      Joskus nähneeni dokumentin todistelusta, ja vähäisen matematiikan tuntemukseni perusteella sain käsityksen että jokin japanilainen (ehkä) matemaatikko oli suuren työn jälkeen onnistunut todistamaan että kaikki elliptiset käyrät ovat modulaarisia ja Wiles keskittyi todistamaan, että Fermaatin iso lause on elliptinen.
      Wiles taisi matkan varrella julkaista useammankin kerran todistuksensa arvioitavaksi ja todetuksi virheelliseksi, ennenkuin onnistui lopulta.

      http://fi.wikipedia.org/wiki/Taniyaman–Shimuran_lause

      Fermat huhun mukaan oli itse keksinyt lauseelleen todistuksen, ylläolevan kaltainen se ei varmastikaan ollut.

      • algebrikko

        Ei se niin mennyt. Ribet todisti, että modulaarisuuslauseesta seuraa Fermat'n lause. Sitten Wiles huomasi, että riittää osoittaa lause on voimassa puolivakaille elliptisille käyrille, jonka hän lopulta todisti. Lauseet eivät ole modulaarisia, mutta jotkut käyrät ovat. Itse en ole elliptisten tai modulaaristen käyrien asiantuntija, joten tähän kannattaa suhtautua pienellä varauksella.


    • Femat huijasi..

      Fermat keksi hienon todistuksen kun n=4, ja ilmeisesti kuvitteli että
      myös muut n arvot menisivät yhtä helposti.

      Fermatin lause saadaan todistettua, kun osoitetaan lause todeksi kun
      n on pariton alkuluku tai 4. Ja tuo n=4 todistus löytynee kaikista lukuteorian
      alkeita esittelevistä kirjoista.

      Voihan olla että Fermat todellakin oivalsi jonkin ihmeellisen tavan mutta se
      on epäuskottavaa.

      • ????

        Asiaan löysästi liittyen tässä Stieg Larssonin Millenium-trilogiassa tätä suurta lausetta, siksi sitä siinä nimitetään vaikkakin täysin väärin, raahataan mukana kahdessa viiimeisessä osassa. Kirjan päähenkilö, jonka nimeä en tähän hätään muista, myös keksii tuon saman minkä Fermatkin. Ei tietenkään paljasta hänkään sitä todistusta.


    • amatöörimatikisti

      Minusta Takeshi Saito on kirjoittanut ihan hyvän kirjan "Fermat's Last Theorem Basic Tools". Takakansi väittää, että todistus annetaan yksityiskohtaisesti, mutta siinä on paljon skipattuja todistuksia. Lopussa on kuitenkin lähdeluettelo, jossa on 56 viitettä enimmäkseen artikkeleihin mutta myös joihinkin kirjoihin. Kirjasta on tulossa jatko-osa, "Fermat's Last Theorem Basic Tools: The Proof" joka ilmeisesti vie todistuksen loppuun. Todistuksen omaksuminen ei kuitenkaan onnistu insinööritiedoin, vaan joutuu tekemään aika paljon duunia, jotta todistukset saa palautettua ZFC:hen asti.

      Todistuksen idea on seuraava. Olkoon yhtälö A^n B^n=C^n. FLT on voimassa tapauksissa, joissa eksponentti n on 3 tai 4, joten tarkastellaan tapauksia, joissa n on vähintään 5 ja alkuluku. Voidaan olettaa, että A, B ja C ovat keskenään jaottomia, 4|C 1:n ja 2|B:n. Tarkastellaan elliptistä käyrää E_{C^l,B^l}, jonka määrittelee yhtälö y^2=x(x-C^l)(x-B^l). Jos Fermat'n suurella lauseella olisi nollasta poikkeva ratkaisu kun n on vähintään viisi, on E:n oltava modulaarinen, ja l-torsioalkioiden ryhmä E[l] on modulaarinen ja tasoa 2. Toisaalta ei ole olemassa nollasta poikkeavaa modulimuotoa, jonka taso on 1 tai 2. Tämä on ristiriita.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Kuolemanrangaistus

      Mielestäni kuolemanrangaistus on väärin kaikissa tilanteissa. Vaikka joku olisi murhannut 10 ihmistä, hänen surmaaminen
      Laki ja rikos
      50
      3780
    2. Muistakaa persut, että TE petitte, ei kokoomus

      Miksikö kukaan ei arvostele kokoomusta? No sen vuoksi, että kokoomus noudattaa vaalilupauksiaan. Sen sijaan TE persut,
      Maailman menoa
      184
      3374
    3. Seuraava hallituspohja - Kokoomus, kepu, persut + KD

      Kokoomus saa ainakin 20% kannatuksen ensi vaaleissa, keskusta sanoisin noin 15%, persut todennäköisesti enemmän, ehkä 17
      Maailman menoa
      235
      2907
    4. Outo ilmiö - vasemmistolaiset eivät kirjoita mitään kokoomuksesta

      joka sentään johtaa hallitusta, ja jonka talouspolitiikkaa noudatetaan. Nämä muutamat vasemmistolaiset jotka täällä aina
      Maailman menoa
      71
      2489
    5. Maria Veitola kommentoi soutelija Saarion huomionhakuisuutta

      "Minusta on jotenkin kuvottavaa, kuinka kovalla intensiteetillä Suomi-media seuraa miessankari Jari Saarion merihätää. S
      Kotimaiset julkkisjuorut
      317
      1826
    6. Väestöstä vain vassarit vaihtuvat nopeammin kuin persut

      Kevääseen 2023 verrattuna vassareita 50 prosenttia enemmän, ja persuja 25 prosenttia vähemmän.
      Maailman menoa
      11
      1523
    7. Lopetan ikävöinnin

      Ei meistä enää koskaan tule mitään. Olen ikävöinyt ja kaivannut enkä saa mitään vastakaikua ja lämpöä. Parempi erillään
      Ikävä
      3
      1391
    8. Vihervassarit

      Vihervassarit sitä, vihervassarit tätä. Minulla on paha mt-ongelma. Se tuli lobotomian jälkioireina. Vihervassarit tät
      Maailman menoa
      27
      1391
    9. Muovipusseista pitäisi saada panttimaksu takaisin

      Ostan joka päivä yhden muovipussin, ja niistä palautuu keskimäärin takaisin kaupan pullomaatin yhteydessä olevaan roskik
      Maailman menoa
      42
      1278
    10. Ei ole liian myöhäistä..

      Tule mun luo ja katso silmiin, niin saadaan taas se sanaton yhteys ja sano sitten vain anteeksi rakas ja suutele ja hala
      Ikävä
      3
      1152
    Aihe