fermatin kuuluisa lause

fermatti

Moi matematiikan opiskelijat ja varsinkin tytöt, jotka tuntuvat olevan fiksumpia matematiikassa. Mistä linkistä löytäisin fermat`n kuuluisan todistuksen eli suuren lauseen selkokielellä googlesta. Olen vain tavallinen insinööri enkä juuri tiedä matikasta kuin perusintegroinnit, mutta olisi hauska nähdä se suuri todistus ihan tietokoneella. Sehän lienee noin 100 sivuinen pimaska pelkkää matematiikan symboleita, mutta ihan vaan haluaisin hämmästellä sitä valtavaa työmäärää, joka siihen on mennyt 7-8 vuoden aikana.

6

399

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • algebrikko

      Fermat ei todistanut lausettaan, vaan sen teki Andrew Wiles. Todistus löytyy osoitteesta http://math.stanford.edu/~lekheng/flt/wiles.pdf Tuo on käsittääkseni ainoa validi todistus lauseelle ja jos sen haluaa selkokieliseksi, siinä joutuu opettelemaan aika paljon matikkaa.

    • Muistelen

      Joskus nähneeni dokumentin todistelusta, ja vähäisen matematiikan tuntemukseni perusteella sain käsityksen että jokin japanilainen (ehkä) matemaatikko oli suuren työn jälkeen onnistunut todistamaan että kaikki elliptiset käyrät ovat modulaarisia ja Wiles keskittyi todistamaan, että Fermaatin iso lause on elliptinen.
      Wiles taisi matkan varrella julkaista useammankin kerran todistuksensa arvioitavaksi ja todetuksi virheelliseksi, ennenkuin onnistui lopulta.

      http://fi.wikipedia.org/wiki/Taniyaman–Shimuran_lause

      Fermat huhun mukaan oli itse keksinyt lauseelleen todistuksen, ylläolevan kaltainen se ei varmastikaan ollut.

      • algebrikko

        Ei se niin mennyt. Ribet todisti, että modulaarisuuslauseesta seuraa Fermat'n lause. Sitten Wiles huomasi, että riittää osoittaa lause on voimassa puolivakaille elliptisille käyrille, jonka hän lopulta todisti. Lauseet eivät ole modulaarisia, mutta jotkut käyrät ovat. Itse en ole elliptisten tai modulaaristen käyrien asiantuntija, joten tähän kannattaa suhtautua pienellä varauksella.


    • Femat huijasi..

      Fermat keksi hienon todistuksen kun n=4, ja ilmeisesti kuvitteli että
      myös muut n arvot menisivät yhtä helposti.

      Fermatin lause saadaan todistettua, kun osoitetaan lause todeksi kun
      n on pariton alkuluku tai 4. Ja tuo n=4 todistus löytynee kaikista lukuteorian
      alkeita esittelevistä kirjoista.

      Voihan olla että Fermat todellakin oivalsi jonkin ihmeellisen tavan mutta se
      on epäuskottavaa.

      • ????

        Asiaan löysästi liittyen tässä Stieg Larssonin Millenium-trilogiassa tätä suurta lausetta, siksi sitä siinä nimitetään vaikkakin täysin väärin, raahataan mukana kahdessa viiimeisessä osassa. Kirjan päähenkilö, jonka nimeä en tähän hätään muista, myös keksii tuon saman minkä Fermatkin. Ei tietenkään paljasta hänkään sitä todistusta.


    • amatöörimatikisti

      Minusta Takeshi Saito on kirjoittanut ihan hyvän kirjan "Fermat's Last Theorem Basic Tools". Takakansi väittää, että todistus annetaan yksityiskohtaisesti, mutta siinä on paljon skipattuja todistuksia. Lopussa on kuitenkin lähdeluettelo, jossa on 56 viitettä enimmäkseen artikkeleihin mutta myös joihinkin kirjoihin. Kirjasta on tulossa jatko-osa, "Fermat's Last Theorem Basic Tools: The Proof" joka ilmeisesti vie todistuksen loppuun. Todistuksen omaksuminen ei kuitenkaan onnistu insinööritiedoin, vaan joutuu tekemään aika paljon duunia, jotta todistukset saa palautettua ZFC:hen asti.

      Todistuksen idea on seuraava. Olkoon yhtälö A^n B^n=C^n. FLT on voimassa tapauksissa, joissa eksponentti n on 3 tai 4, joten tarkastellaan tapauksia, joissa n on vähintään 5 ja alkuluku. Voidaan olettaa, että A, B ja C ovat keskenään jaottomia, 4|C 1:n ja 2|B:n. Tarkastellaan elliptistä käyrää E_{C^l,B^l}, jonka määrittelee yhtälö y^2=x(x-C^l)(x-B^l). Jos Fermat'n suurella lauseella olisi nollasta poikkeva ratkaisu kun n on vähintään viisi, on E:n oltava modulaarinen, ja l-torsioalkioiden ryhmä E[l] on modulaarinen ja tasoa 2. Toisaalta ei ole olemassa nollasta poikkeavaa modulimuotoa, jonka taso on 1 tai 2. Tämä on ristiriita.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Ja taas ammuttu kokkolassa

      Kokkolaisilta pitäisi kerätä pois kaikki ampumaset, keittiöveitset ja kaikki mikä vähänkään paukku ja on terävä.
      Kokkola
      30
      3481
    2. Kukka ampu taas Kokkolassa?

      T. olisi hetkeä aiemmin lähtenyt johonkin. Naapuri kai tekijä J.K., ei paljasjalkainen Kokkolalainen, vaan n. 100km pääs
      Kokkola
      9
      1538
    3. Kuinka kauan

      Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?
      Ikävä
      113
      1473
    4. Milli-helenalla ongelmia

      Suomen virkavallan kanssa. Eipä ole ihme kun on etsintäkuullutettu jenkkilässäkin. Vähiin käy oleskelupaikat virottarell
      Kotimaiset julkkisjuorut
      224
      1255
    5. Kun näen sinut

      tulen iloiseksi. Tuskin uskallan katsoa sinua, herätät minussa niin paljon tunteita. En tunne sinua hyvin, mutta jotain
      Ikävä
      34
      893
    6. Purra saksii taas. Hän on mielipuuhassaan.

      Nyt hän leikkaa hyvinvointialueiltamme kymmeniä miljoonia. Sotea romutetaan tylysti. Terveydenhoitoamme kurjistetaan. ht
      Maailman menoa
      242
      883
    7. Yhdelle miehelle

      Mä kaipaan sua niin paljon. Miksi sä oot tommonen pösilö?
      Ikävä
      60
      869
    8. Helena Koivu on äiti

      Mitä hyötyä on Mikko Koivulla kohdella LASTENSA äitiä huonosti . Vie lapset tutuista ympyröistä pois . Lasten kodista.
      Kotimaiset julkkisjuorut
      130
      858
    9. Ja taas kerran hallinto-oikeus että pieleen meni

      Hallinto-oikeus kumosi kunnanhallituksen päätöksen vuokratalojen pääomituksesta. https://sysmad10.oncloudos.com/cgi/DREQ
      Sysmä
      66
      844
    10. Löydänköhän koskaan

      Sunlaista herkkää tunteellista joka jumaloi mua. Tuskin. Siksi harmittaa että asiat meni näin 🥲
      Ikävä
      97
      808
    Aihe