fermatin kuuluisa lause

fermatti

Moi matematiikan opiskelijat ja varsinkin tytöt, jotka tuntuvat olevan fiksumpia matematiikassa. Mistä linkistä löytäisin fermat`n kuuluisan todistuksen eli suuren lauseen selkokielellä googlesta. Olen vain tavallinen insinööri enkä juuri tiedä matikasta kuin perusintegroinnit, mutta olisi hauska nähdä se suuri todistus ihan tietokoneella. Sehän lienee noin 100 sivuinen pimaska pelkkää matematiikan symboleita, mutta ihan vaan haluaisin hämmästellä sitä valtavaa työmäärää, joka siihen on mennyt 7-8 vuoden aikana.

6

448

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • algebrikko

      Fermat ei todistanut lausettaan, vaan sen teki Andrew Wiles. Todistus löytyy osoitteesta http://math.stanford.edu/~lekheng/flt/wiles.pdf Tuo on käsittääkseni ainoa validi todistus lauseelle ja jos sen haluaa selkokieliseksi, siinä joutuu opettelemaan aika paljon matikkaa.

    • Muistelen

      Joskus nähneeni dokumentin todistelusta, ja vähäisen matematiikan tuntemukseni perusteella sain käsityksen että jokin japanilainen (ehkä) matemaatikko oli suuren työn jälkeen onnistunut todistamaan että kaikki elliptiset käyrät ovat modulaarisia ja Wiles keskittyi todistamaan, että Fermaatin iso lause on elliptinen.
      Wiles taisi matkan varrella julkaista useammankin kerran todistuksensa arvioitavaksi ja todetuksi virheelliseksi, ennenkuin onnistui lopulta.

      http://fi.wikipedia.org/wiki/Taniyaman–Shimuran_lause

      Fermat huhun mukaan oli itse keksinyt lauseelleen todistuksen, ylläolevan kaltainen se ei varmastikaan ollut.

      • algebrikko

        Ei se niin mennyt. Ribet todisti, että modulaarisuuslauseesta seuraa Fermat'n lause. Sitten Wiles huomasi, että riittää osoittaa lause on voimassa puolivakaille elliptisille käyrille, jonka hän lopulta todisti. Lauseet eivät ole modulaarisia, mutta jotkut käyrät ovat. Itse en ole elliptisten tai modulaaristen käyrien asiantuntija, joten tähän kannattaa suhtautua pienellä varauksella.


    • Femat huijasi..

      Fermat keksi hienon todistuksen kun n=4, ja ilmeisesti kuvitteli että
      myös muut n arvot menisivät yhtä helposti.

      Fermatin lause saadaan todistettua, kun osoitetaan lause todeksi kun
      n on pariton alkuluku tai 4. Ja tuo n=4 todistus löytynee kaikista lukuteorian
      alkeita esittelevistä kirjoista.

      Voihan olla että Fermat todellakin oivalsi jonkin ihmeellisen tavan mutta se
      on epäuskottavaa.

      • ????

        Asiaan löysästi liittyen tässä Stieg Larssonin Millenium-trilogiassa tätä suurta lausetta, siksi sitä siinä nimitetään vaikkakin täysin väärin, raahataan mukana kahdessa viiimeisessä osassa. Kirjan päähenkilö, jonka nimeä en tähän hätään muista, myös keksii tuon saman minkä Fermatkin. Ei tietenkään paljasta hänkään sitä todistusta.


    • amatöörimatikisti

      Minusta Takeshi Saito on kirjoittanut ihan hyvän kirjan "Fermat's Last Theorem Basic Tools". Takakansi väittää, että todistus annetaan yksityiskohtaisesti, mutta siinä on paljon skipattuja todistuksia. Lopussa on kuitenkin lähdeluettelo, jossa on 56 viitettä enimmäkseen artikkeleihin mutta myös joihinkin kirjoihin. Kirjasta on tulossa jatko-osa, "Fermat's Last Theorem Basic Tools: The Proof" joka ilmeisesti vie todistuksen loppuun. Todistuksen omaksuminen ei kuitenkaan onnistu insinööritiedoin, vaan joutuu tekemään aika paljon duunia, jotta todistukset saa palautettua ZFC:hen asti.

      Todistuksen idea on seuraava. Olkoon yhtälö A^n B^n=C^n. FLT on voimassa tapauksissa, joissa eksponentti n on 3 tai 4, joten tarkastellaan tapauksia, joissa n on vähintään 5 ja alkuluku. Voidaan olettaa, että A, B ja C ovat keskenään jaottomia, 4|C 1:n ja 2|B:n. Tarkastellaan elliptistä käyrää E_{C^l,B^l}, jonka määrittelee yhtälö y^2=x(x-C^l)(x-B^l). Jos Fermat'n suurella lauseella olisi nollasta poikkeva ratkaisu kun n on vähintään viisi, on E:n oltava modulaarinen, ja l-torsioalkioiden ryhmä E[l] on modulaarinen ja tasoa 2. Toisaalta ei ole olemassa nollasta poikkeavaa modulimuotoa, jonka taso on 1 tai 2. Tämä on ristiriita.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Kuolemanrangaistus

      Mielestäni kuolemanrangaistus on väärin kaikissa tilanteissa. Vaikka joku olisi murhannut 10 ihmistä, hänen surmaaminen
      Laki ja rikos
      126
      7130
    2. Miksi persut eivät häädä mamuja pois Suomesta?

      Sitä vartenhan persut äänestettiin valtaan. Nyt valta on persuilla. Mamut nostaa työttömyyskorvauksia. Persut huutaa mam
      Maailman menoa
      91
      4948
    3. Riikka Purra ei estä tehomaksun käyttöönottoa

      Sähkön hinnoittelua koskevan määräyksen on määrä astua voimaan vuoden 2029 alusta, Energiavirastosta kerrotaan. Määräyk
      Maailman menoa
      73
      3801
    4. Sinä olet minun forEver

      Sinä olet minun sielussain, sydämessäin, huulillain, sinä olet ain, Sinä olet vieressäin, kainalossain, sylissäin, ain,
      Ikävä
      27
      3034
    5. Sanna Marinille pedataan paluuta pääministeriksi?

      Näyttäisi mylly lähteneen käyntiin nyt toden teolla. Nykyiset oikeistodemarit haukutaan vasemmistodemareiden toimesta ni
      Maailman menoa
      45
      2596
    6. Jos kaikki lopulta kuolevat, onko edes pahimmillakaan rikoksilla mitään väliä?

      Kaikki kuolevat lopulta. Siksi ihmisten tekemillä rikoksillakaan ei lopulta ole mitään merkitystä. Joidenkin mielestä t
      Filosofia
      28
      1989
    7. Muistakaa demarit, että TE petitte, ei vihreät tai vas.liitto

      Te veitte eduskunnasta turvallisen tilan, veditte sen viemäristä alas. Te demarit, itsensä ylentäneet moraalinvartijat,
      Maailman menoa
      26
      1985
    8. Mies joka vetäytyy osoittaa teoillaan

      Ettei halua olla tekemisissä. Mies joka ei vastaa viesteihin, ei halua sua. Mies joka jättää sut epätietoisuuteen, ei
      Ikävä
      209
      1515
    9. Martinan prinsessahäät peruuntui

      Seiska uutisoi Kauneus ja Terveyslehden artikkeliin perustuen mihin nämä häät kosahti.
      Kotimaiset julkkisjuorut
      326
      1337
    10. Vakavasti psyykkisesti sairas on pakkohoidossa - Ja asuu silti kotona

      Miten käy, kun vakavasti psyykkisesti sairas "hoidetaan" kotona? Norjassa psyykkisesti sairaiden vuodepaikkojen määrä on
      47
      1136
    Aihe