Empiirinen kolikonheitto

Kreationismi ja älykäs suunnittelu-palstalla kreationisti *JC yrittää väittää Enqvistin kolikonheittoesimerkkiä virheelliseksi.

*JC väittää mm. näin:

"Jos tulos, joka toisessa arvonnassa tulisi saada on unohtunut, ei ole väliä mitä tulee tulokseksi. Mikä tahansa tulos käy hyvin "unohtuneeksi tulokseksi", joten todennäköisyys todellakin muuttuu. Se on tässä tapauksessa 1."

"Unohdettu rivi on käytännössä sama kuin tuntematon rivi. Tuntemattomaksi riviksi käy toisessa arvonnassa mikä tahansa rivi. Mikä tahansa rivi saadaan toisessa arvonnassa todennäköisyydellä 1."

Ja tämä sama tyyppi kehtasi kirjoittaa myös, että hän muka ymmärtää todennäköisyyslaskut niin syvällisesti, ettei hän voi edes kuvitella, että hänelle tulisi niissä virheitä.

Tein siis tällaiset heitot:

1. Heitin 3 kolikkoa järjestyksessä sohvan alle, enkä vieläkään tiedä mikä rivi siellä on, joten *JC:n mukaan minun tulisi saada todennäköisyydellä 1 eli täysin varmasti sama rivi seuraavalla heitolla, koska rivi on tuntematon ja "Tuntemattomaksi riviksi käy toisessa arvonnassa mikä tahansa rivi. Mikä tahansa rivi saadaan toisessa arvonnassa todennäköisyydellä 1."

2: Heitin kolmea kolikkoa peräkkäin 128 kertaa ja sain tulokset:

kruuna-kruuna kruuna: 14 kertaa
kruuna-kruuna-klaava: 18 kertaa
kruuna-klaava-kruuna: 14 kertaa
kruuna-klaava-klaava: 17 kertaa
klaava-kruuna-kruuna: 16 kertaa
klaava-kruuna-klaava: 17 kertaa
klaava-klaava-kruuna: 18 kertaa
klaava-klaava-klaava: 14 kertaa

Todennäköisyysteoria ennustaa, että vastoin *JC:n väitteitä, toisella heitolla saadaan sama rivi kuin ensimmäinen todennäköisyydellä 1/8, mikä on myös kunkin yksittäisen rivin todennäköisyys. Matemaattinen kaava tähän on n/n^m, missä n = alkeistapausten määrä eli 8 erilaista mahdollista kolmen kolikon riviä ja m = toistokertojen määrä eli tässä tapauksessa n = 8 ja m = 2 ja lasku on siis 8/8^2 =1/8.

Tilastollisen todennäköisyyden kaava on P(A) = fA/n, jossa fA on tapahtuman A frekvenssi ja n havaintojen lukumäärä. Koska emme tunne riviä, jonka heitin sohvan alle, voimme laskea jokaiselle eri riville todennäköisyydet erikseen:

P(A1): P(kruuna-kruuna kruuna): 14/128 = 0,1094
P(A2): P(kruuna-kruuna-klaava): 18/128 = 0,1406
P(A3): P(kruuna-klaava-kruuna): 14/128 = 0,1094
P(A4): P(kruuna-klaava-klaava): 17/128 = 0,1328
P(A5): P(klaava-kruuna-kruuna): 16/128 = 0,1250
P(A6): P(klaava-kruuna-klaava): 17/128 = 0,1328
P(A7): P(klaava-klaava-kruuna): 18/128 = 0,1406
P(A8): P(klaava-klaava-klaava): 14/128 = 0,1094

Huomaamme, täsmälleen päinvastoin kuin *JC väittää, että todennäköisyysmatematiikan teorian ennusteet osuvat tässäkin empiirisessä kolikonheitossa kohdalleen, selvästikin todennäköisyys saada sama rivi kuin tuo piilossa oleva tuntematon rivi lähenee todennäköisyyttä 1/8 eli 0,125 mitä enemmän heittoja suoritetaan eikä sen saamisen todennäköisyys missään vaiheessa ollut 1 tai lähene yhtä.

*JC:n alkeellinen virhe siis on, että koska emme tunne tuota ensimmäistä riviä, niin sen todennäköisyys olisi muka toisella heitolla 1, kun se todellisuudessa sekä matemaattisesti teorian mukaan, että käytännössä empiirisellä kolikonheitolla on 1/8. Ja täsmälleen sama pätee *JC:n virheeseen Enqvistin esimerkissä: hän esittää, että P(mikä tahansa yksittäinen rivi) = P(mikä tahansa rivi) = P(kaikki mahdolliset rivit) = 1. Ja se on väärin, tuntemattomalla rivillä Enqvistin esimerkissä on todennäköisyys 1/2^100 aivan kuten tässä empiirisessä kolikonheitossa tuntemattoman rivin todennäköisyys olla sama kuin ensimmäisen heiton rivi oli 1/8.

Jälkikirjoituksena, katsoin rivin sohvan alta muutaman päivän päästä ja se oli kruuna-kruuna-klaava, minkä todennäköisyys siis kokeellisesti oli 18/128 = 0,1406 eli käytännössä 1/8.

Haluaisin saada tähän esimerkkiini jonkun matemaatikon kommentit, samoin kuin noihin *JC:n väitteisiin.

9

303

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • kuiva nalli 666

      Hienoa ajan tuhlausta hermanni

    • Mane

      En ole matemaatikko, mutta todennäköisyyttä klassisessa eli otantateoreettisessa eli frekventistisessä mielessä ei ole olemassa, ts. ko. tn-käsite on ideaalityyppi ja kuuluu metafysiikan, ei tieteen puolelle.

      Todennäköisyys määritellään otantateoreettisessa formalismissa tapahtuman suhteellisen frenvenssin raja-arvona äärettömyydessä homogeenisten olosuhteiden vallitessa. Eli se siitä: Tuo käsite on täysin ei-operatiivinen.

      Ainoa toimiva (suhteessa reaalimaailmaan) tn-käsite on uskomusastetulkinta, jota mm. bayesiläinen formalismi soveltaa.

      • "Ainoa toimiva (suhteessa reaalimaailmaan) tn-käsite on uskomusastetulkinta, jota mm. bayesiläinen formalismi soveltaa."

        Kerropas miksi empiirisessä kolikonheitossani eri sarjojen todennäköisyydet lähestyvät teoreettista arvoa 1/8, jos tuo teoria ei ole sovellettavissa käytäntöön.


      • Mane
        moloch_horridus kirjoitti:

        "Ainoa toimiva (suhteessa reaalimaailmaan) tn-käsite on uskomusastetulkinta, jota mm. bayesiläinen formalismi soveltaa."

        Kerropas miksi empiirisessä kolikonheitossani eri sarjojen todennäköisyydet lähestyvät teoreettista arvoa 1/8, jos tuo teoria ei ole sovellettavissa käytäntöön.

        Ei toistokokeita voi esim. yhteiskunta- tai insinööritieteissä suorittaa. Kaikki tapahtuu vain kerran. On siis vain 1 havaintoaineisto.

        Kontrolloidut kokeet ova asia erikseen, mutta reaalimaailman ilmiöt ovat stokastisia & dynaamisia, eikä ne toimi suljetussa laboratoriossa, vaan avoimesssa labiilissa systeemissä.

        Itse toki käytän usein (virheellisesti siis) otantateoreettista lähestymistapaa, koska bayesiläinen lähestymistapa johtaa tyypillisesti uusiin ongelmiin.


      • moloch_horridus
        Mane kirjoitti:

        Ei toistokokeita voi esim. yhteiskunta- tai insinööritieteissä suorittaa. Kaikki tapahtuu vain kerran. On siis vain 1 havaintoaineisto.

        Kontrolloidut kokeet ova asia erikseen, mutta reaalimaailman ilmiöt ovat stokastisia & dynaamisia, eikä ne toimi suljetussa laboratoriossa, vaan avoimesssa labiilissa systeemissä.

        Itse toki käytän usein (virheellisesti siis) otantateoreettista lähestymistapaa, koska bayesiläinen lähestymistapa johtaa tyypillisesti uusiin ongelmiin.

        "Ei toistokokeita voi esim. yhteiskunta- tai insinööritieteissä suorittaa. Kaikki tapahtuu vain kerran. On siis vain 1 havaintoaineisto.

        Kontrolloidut kokeet ova asia erikseen, mutta reaalimaailman ilmiöt ovat stokastisia & dynaamisia, eikä ne toimi suljetussa laboratoriossa, vaan avoimesssa labiilissa systeemissä."

        Myös esim. rahapelit ovat reaalimaailman tapahtumia ja niissä siis vastoin väitettäsi käytetään klassista todennäköisyyslaskentaa.


      • Mane
        moloch_horridus kirjoitti:

        "Ei toistokokeita voi esim. yhteiskunta- tai insinööritieteissä suorittaa. Kaikki tapahtuu vain kerran. On siis vain 1 havaintoaineisto.

        Kontrolloidut kokeet ova asia erikseen, mutta reaalimaailman ilmiöt ovat stokastisia & dynaamisia, eikä ne toimi suljetussa laboratoriossa, vaan avoimesssa labiilissa systeemissä."

        Myös esim. rahapelit ovat reaalimaailman tapahtumia ja niissä siis vastoin väitettäsi käytetään klassista todennäköisyyslaskentaa.

        Laskenta todennäköisyyksillä on sama eri formalismeissa, mutta tulkinta eri.


    • Dr. Phii

      No-no, todennäköisyyttä on useampaa sorttia, joista bayeslainen vain yksi. Muistaakseni (ainakin) kirjasta Tuomela (toim.): Yhteiskuntatieteiden eksakti metodologia löytyy Ilkka Niiniluodon artikkeli "Todennäköisyyden lajeista". Suosittelen näkökulman laajentamiseksi noin aluksi!

      Luulin jo ajat sitten, että pässinpäinen jankutus frekventistit vs. bayeslaiset olisi jo hedelmättömänä ohitse, vaan eipä vaan näköjään.

      Aloitukseen palatakseni: tuo JC on kyllä täyskaheli ja moloch_h... ihan oikeassa ihan ilman tuota koettakin (kivahan noita on joskus ajanvietteeksi tehdä, vaikka asia on selvä aivan tn-laskennan alkeiden perusteilla, jopa bayeslaittain).

      • Mane

        En jankuta minä ainakaan, vaan yksinkertaisesti totesin, mitä tieteen filosofia ja soveltava matematiikka sanoo.

        Mitä muita tn-tulkintoja sitten on olemassa, otantateoreettisen ja bayesiläisen tulkinnan ohella? En ole nimittäin moisista kuullut lainkaan.


      • Dr. Phii
        Mane kirjoitti:

        En jankuta minä ainakaan, vaan yksinkertaisesti totesin, mitä tieteen filosofia ja soveltava matematiikka sanoo.

        Mitä muita tn-tulkintoja sitten on olemassa, otantateoreettisen ja bayesiläisen tulkinnan ohella? En ole nimittäin moisista kuullut lainkaan.

        Tuo mainitsemani Niiniluodon artikkeli kyllä kannattaa lukea. Puhtaasti matemaattinen todennäköisyysteoria yleensä tutkii todennäköisyyden formaalisia ominaisuusksia. Filofofiassa (logiikassa) tutkitaan lisäksi tn:ien tulkintaan liittyviä periaatekysymyksiä. Esim. ainutlaatuisen tapauksen todennäköisyys on erittäin kinkkinen ongelma sekä frekventisteille että bayeslaisille, kun hieman pintaa syvemmälle mennään.

        Noista muista "lajeista" kannataa mainita ainakin komparatiivisen ja induktiivisen todennäköisyyden käsitteet.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Useita puukotettu Tampereella

      Mikäs homma tämä nyt taas on? "Useaa henkilöä on puukotettu Tampereen keskustassa kauppakeskus Ratinan lähistöllä." ht
      Tampere
      186
      3525
    2. Asiakas iski kaupassa varastelua tehneen kanveesiin.

      https://www.iltalehti.fi/kotimaa/a/33a85463-e4d5-45ed-8014-db51fe8079ec Oikein. Näin sitä pitää. Kyllä kaupoissa valtava
      Maailman menoa
      376
      2210
    3. Kuka rääkkää eläimiä Puolangalla?

      Poliisi ampui toistakymmentä nälkiintynyttä eläintä Puolangalla Tilalta oli ollut karkuteillä lähes viisikymmentä nälkii
      Puolanka
      56
      2196
    4. Leipivaaran päällä on kuoleman hiljaista.

      Suru vai suuri helpotus...
      Puolanka
      43
      2062
    5. Meneeköhän sulla

      oikeasti pinnan alla yhtä huonosti kuin mulla? Tai yhtä huonosti mutta jollain eri tyylillä? Ei olisi pitänyt jättää sua
      Ikävä
      32
      1491
    6. Jos ei tiedä mitä toisesta haluaa

      Älä missään nimessä anna mitään merkkejä kiinnostuksesta. Ole haluamatta mitään. Täytyy ajatella toistakin. Ei kukaan em
      Ikävä
      93
      1251
    7. Määpä tiijän että rakastat

      Minua nimittäin. Samoin hei! Olet mun vastakappaleeni.
      Ikävä
      54
      1213
    8. Muutama kysymys ja huomio hindulaisesta kulttuurista.

      Vedakirjoituksia pidetään historiallisina teksteinä, ei siis "julistuksena" kuten esimerkiksi Raamattua, vaan kuten koul
      Hindulaisuus
      449
      1189
    9. Jumala puhui minulle

      Hän kertoi sinusta asioita, joiden takia jaksan, uskon ja luotan. Hän kuvaili sinua minulle ja pakahduin onnesta kuulles
      Ikävä
      118
      1045
    10. Koska näit kaivattusi viimeksi

      Milloin tapasit rakkaasi? Ja etenikö suhde yhtään?
      Ikävä
      59
      994
    Aihe