Hiukkasen paikka

Hiukkasena

Onko hiukkasen paikan mittaamiselle olemassa jokin teoreettinen raja mitä tarkemmin ei saa mitattua?

20

239

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • iuyyu97tf

      Käsittääkseni ei. Tällöin kuitenkin hukataan kaikki tieto hiukkasen liikkeestä. Ja päin vastoin, jos liike tunnetaan, paikkatieto hukkuu.

      • saatanan tunarit

        Ei huku jos ei hukata.


      • Mitä möliset?
        saatanan tunarit kirjoitti:

        Ei huku jos ei hukata.

        Heisenberg olisi eri mieltä kanssasi. Itse asiassa kaikki kvanttifyysikot ovat eri mieltä kanssasi.

        Wiki:
        "Heisenbergin epätarkkuusperiaate on Werner Heisenbergin vuonna 1927 esittämä kvanttimekaniikan perusperiaate, jonka mukaan tiettyjen observaabeliparien arvoja ei voida määrittää samanaikaisesti äärettömän tarkasti. [1] Tällaisia observaabelipareja ovat esimerkiksi hiukkasen paikka ja liikemäärä,..."

        Delta x kertaa delta p on aina suurempi tai yhtäsuuri kuin redusoitu Plancin vakio jaettuna kahdella. Perin yksinkertaista arvon mölisijä.


      • Hiukkasena

        Jos hiukkasen paikka voidaan teoriassa mitata mielivaltaisella tarkkuudella, niin eikö
        sen perusteella hiukkasella todellisuudessakin voi olla tarkka sijainti?


      • +uiyi0yfu9f
        Hiukkasena kirjoitti:

        Jos hiukkasen paikka voidaan teoriassa mitata mielivaltaisella tarkkuudella, niin eikö
        sen perusteella hiukkasella todellisuudessakin voi olla tarkka sijainti?

        Kyllä, mutta silloin menettää tiedon hiukkasen liikemäärästä.


      • ihtehk
        Hiukkasena kirjoitti:

        Jos hiukkasen paikka voidaan teoriassa mitata mielivaltaisella tarkkuudella, niin eikö
        sen perusteella hiukkasella todellisuudessakin voi olla tarkka sijainti?

        Hiukkasella ei ole tarkkaa sijaintia ennenkuin mittaus tehdään. (Jos mittausta ei tehdä, sillä ei ole tarkkaa sijaintia.) Koska hiukkasen liikemäärä on täysin epämääräinen hiukkanen löytyy myöhemmin jostain valonnopeutta kasvavan pallon sisältä.


      • Hiukkasena
        ihtehk kirjoitti:

        Hiukkasella ei ole tarkkaa sijaintia ennenkuin mittaus tehdään. (Jos mittausta ei tehdä, sillä ei ole tarkkaa sijaintia.) Koska hiukkasen liikemäärä on täysin epämääräinen hiukkanen löytyy myöhemmin jostain valonnopeutta kasvavan pallon sisältä.

        Sama ilmeisesti pätee myös hiukkasen nopeudelle? Onko hiukkasen nopeuden mittaamiselle olemassa jokin teoreettinen raja mitä tarkemmin ei saa mitattua?


      • Lee Smolinisti
        Mitä möliset? kirjoitti:

        Heisenberg olisi eri mieltä kanssasi. Itse asiassa kaikki kvanttifyysikot ovat eri mieltä kanssasi.

        Wiki:
        "Heisenbergin epätarkkuusperiaate on Werner Heisenbergin vuonna 1927 esittämä kvanttimekaniikan perusperiaate, jonka mukaan tiettyjen observaabeliparien arvoja ei voida määrittää samanaikaisesti äärettömän tarkasti. [1] Tällaisia observaabelipareja ovat esimerkiksi hiukkasen paikka ja liikemäärä,..."

        Delta x kertaa delta p on aina suurempi tai yhtäsuuri kuin redusoitu Plancin vakio jaettuna kahdella. Perin yksinkertaista arvon mölisijä.

        "Onko hiukkasen paikan mittaamiselle olemassa jokin teoreettinen raja mitä tarkemmin ei saa mitattua?"

        On, ajan ja avaruuden kvantittumisen mittakaava eli ns. perusmittakaava. Sitä pienempää tuhrua avaruutta ja aikaa ei yksinkertaisesti ole, joten sitä pienempää epämääräisyyttä ei tarvitse etsiä.


    • tässä täsmällisesti

      Delta x kertaa delta p on suurempi tai yhtäsuuri kuin redusoidun Plancin vakio jaettuna kahdella.

      Jossa:
      delta x on hiukkasen paikan epätarkkuus ja
      delta p on hiukkasen liikemäärän epätarkkuus.

      • pommimies59

        Tarkkaan ottaen tämä Heisenbergin epätarkkuusperiaate ei pidä paikkaansa.
        Heisenbergin epätarkkuusperiaate rikottiin tuossa viime vuonna muistaakseni.

        On olemassa kahdenlaista epätarkkuutta; epätarkkuutta, joka johtuu mittauksesta, ja sitten on epätarkkuutta, joka johtuu siitä että alkeishiukkasilla ei yksinkertaisesti ole mitään tarkkaa paikkaa tai liikemäärää, mutta tämä hiukkasten "todellinen" epämääräisyys on niin pientä, että sitä ei -käytännössä- ole olemassakaan.

        Ja nykyään tiedetään, että planckin mittakaavaa lyhyemmän skaalan ilmiöitä VOIDAAN tutkia, toisin kuin ennen kuviteltiin.


    • örkki

      Hiukkasen paikka on oma juttunsa, mutta pienien etäisyyksien mittaaminen käy hankalaksi kun lähestytään mittaamisessa käytetyn valon aallonpituutta.

      • Aivan. Tällöin pienissä mittakaavoissa asia menee relativistiseksi ja tällöin ei ole ihan selvää mikä on aika ja mikä paikka, niiden suhde ei ole yksikäsitteinen.


    • On!

      On olemassa pituuden alaraja, jota pienemmistä mittakaavoista puhuttaessa koko hiukkasen käsitteen merkitys menee sumeaksi.

      • pommimies59

        kuinka suuri tämä alaraja on?

        vastaan itse: erään juuri julkaistun tutkimuksen mukaan se on alle 10^-48 metriä - ja tällaisen alarajan olemassaoloa ei saatu todistettua, koska mittauksille on olemassa rajansa, ja mittari meni tällä kertaa tappiin - tarkemmin sanoen avaruuden rakeisuus ei ilmene vielä silloinkaan, kun pituus on tuo yllä mainittu luku.
        vertailun vuoksi planckin pituus on n. 1,6*1^-35.


      • pommimies59
        pommimies59 kirjoitti:

        kuinka suuri tämä alaraja on?

        vastaan itse: erään juuri julkaistun tutkimuksen mukaan se on alle 10^-48 metriä - ja tällaisen alarajan olemassaoloa ei saatu todistettua, koska mittauksille on olemassa rajansa, ja mittari meni tällä kertaa tappiin - tarkemmin sanoen avaruuden rakeisuus ei ilmene vielä silloinkaan, kun pituus on tuo yllä mainittu luku.
        vertailun vuoksi planckin pituus on n. 1,6*1^-35.

        korjaus: vertailun vuoksi planckin pituus on n. 1,6*10^-35. EI SIIS n. 1,6*1^-35.


      • pommimies59 kirjoitti:

        kuinka suuri tämä alaraja on?

        vastaan itse: erään juuri julkaistun tutkimuksen mukaan se on alle 10^-48 metriä - ja tällaisen alarajan olemassaoloa ei saatu todistettua, koska mittauksille on olemassa rajansa, ja mittari meni tällä kertaa tappiin - tarkemmin sanoen avaruuden rakeisuus ei ilmene vielä silloinkaan, kun pituus on tuo yllä mainittu luku.
        vertailun vuoksi planckin pituus on n. 1,6*1^-35.

        CERN toimii maksimissaan juuri tuolla mitta-skaalalla!
        Ja se ei ole ihan sattumaa, fysiikan lait on teoretisoitu ~ CERN:n mahdollistamiin energioigin asti. Kaikki yläpuolella oleva on kokeellisesti hyvin hankala todistaa, ennen kuin meillä on korkeampia energioita mahdollistava laite.


      • tractor kirjoitti:

        CERN toimii maksimissaan juuri tuolla mitta-skaalalla!
        Ja se ei ole ihan sattumaa, fysiikan lait on teoretisoitu ~ CERN:n mahdollistamiin energioigin asti. Kaikki yläpuolella oleva on kokeellisesti hyvin hankala todistaa, ennen kuin meillä on korkeampia energioita mahdollistava laite.

        Tarkoitan siis tässä "CERN":lla CERN:n LHC -laitetta...


      • tractor kirjoitti:

        Tarkoitan siis tässä "CERN":lla CERN:n LHC -laitetta...

        Alkuperäiselle kysyjälle vastauksena: Kysymys menee dimensio-analyysina heuristisesti s.e. kun Energian dimensio = 1/pituuden dimensio.
        Ts. vastaus kysymykseen pienimmästä "järkevästä" pituus-skaalasta L on
        L ~ 1/(LHC:n max energia). Ei ole varmaa miten fysikaaliset ilmiöt käyttäytyvät suuremmilla energioilla.

        (Toki tähän voi vastata eksaktimminkin kun "tietää" kvantin aallonpituuden. Pienemmillä (aallon)pituuksilla kvantin hiukkas-tulkinta hajoaa).


      • pommimies59 kirjoitti:

        korjaus: vertailun vuoksi planckin pituus on n. 1,6*10^-35. EI SIIS n. 1,6*1^-35.

        Tuo planckin pituus on ihan absoluuttinen pituuden alaraja. Meillä ei ole tietoa miltä maailma näyttää noin pienillä mittaskaaloilla.
        Hiukkasen "hiukkasluonne" katoaa jo paljon ennen tuota skaalaa, eli noin Comptonin aallonpituuden mittakaavassa. (Tuolloin ei ole enää selvää mikä se hiukkanen on kun sitä ympäröivien hiukkas-antihiukkas -parien vaikutus kasvaa suuremmaksi ja suuremmaksi mitä pienempää aluetta tutkitaan).


      • tractor kirjoitti:

        Alkuperäiselle kysyjälle vastauksena: Kysymys menee dimensio-analyysina heuristisesti s.e. kun Energian dimensio = 1/pituuden dimensio.
        Ts. vastaus kysymykseen pienimmästä "järkevästä" pituus-skaalasta L on
        L ~ 1/(LHC:n max energia). Ei ole varmaa miten fysikaaliset ilmiöt käyttäytyvät suuremmilla energioilla.

        (Toki tähän voi vastata eksaktimminkin kun "tietää" kvantin aallonpituuden. Pienemmillä (aallon)pituuksilla kvantin hiukkas-tulkinta hajoaa).

        Lisäys vielä: Jos tutkittavan hiukkasen massa tiedetään, on sitä vastaava pituus-skaala L = h/mc, jossa h planckin vakio, m kyseisen hiukkasen massa ja c valon nopeus. Hiukkanen ei enää "näytä" hiukkaselta tuon pituus-skaalan alapuolella.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. SDP haluaa LISÄÄ veroja bensa-autoille!

      Sdp:n vaihtoehtobudjetti esittää polttomoottoriautoille lisää veroja Sdp esittää tuoreessa vaihtoehtobudjetissaan verot
      Maailman menoa
      275
      18380
    2. Riikka se jytkytti BKT:stä nyt 0,3 prosenttia pois

      Ja vain kolmessa kuukaudessa! Vuositasollahan tuo tarkoittaa reilun prosentin pudotusta. Pärjäisi varmaan lasketteluss
      Maailman menoa
      101
      10560
    3. Vasemmistoaate on aatteista jaloin

      Kaikki saavat ja kukaan ei jää ilman. Kuka tuollaista voisi vastustaa?
      Maailman menoa
      396
      7089
    4. Mihin kaikkeen sinä ihastuit hänessä

      Mikä oli se asia mikä vei jalat altasi? ❤️ Oliko jotain erityistä tilannetta vai tunne? Kenties monen sattuman summa? Ai
      Ikävä
      82
      6963
    5. Persut: haluamme lisää veroja!

      Lisää lisää veroja huutaa persukuoro. Veroila Suomi nousuun! "Uusi matkailuvero eli matkailijamaksu peritään esimerki
      Maailman menoa
      42
      4668
    6. Brittiläinen vasemmistolehti: Sanna Marin oli vihdoin rehellinen

      Nyt tulee pahasti lunta tupaan Seiskan tähtitytölle. Ex-pääministerin kirjaa arvostellaan latteuksista ja itsekehusta.
      Maailman menoa
      85
      3454
    7. "Purra löylytti oppositiota", sanoi naistoimittaja Pöllöraadissa

      Kyllä, Purra tekee juuri sitä työtä mitä hänen tuossa asemassa pitää tehdä, hän antaa oppositiolle takaisin samalla mita
      Maailman menoa
      124
      3018
    8. Alexander C. G. riisti demari-Veijolta arvonimen

      "Stubb myönsi 66 arvonimeä ja peruutti yhden arvonimen. Presidentti Tarja Halonen myönsi Baltzarille kulttuurineuvoksen
      Maailman menoa
      97
      2565
    9. Jos samassa autossa istuu romani, somali ja venäläinen, kuka ajaa?

      Arvioiden mukaan romanit lähtivät noin 1000-luvulla liikkeelle pohjois-Intiasta. Nyt 1000 vuotta myöhemmin he ovat levit
      Maailman menoa
      33
      2336
    10. MTV: Timo Jutila lataa suoraa tekstiä Pippa Laukan tylystä kritiikistä tosi-tv-kuvausten jälkeen

      Juti sai kuulla kyllä kunniansa Olet mitä syöt -ohjelmassa elintavoistaan! Toki olihan siinä aika paljon rasvaista syötä
      Painonhallinta
      33
      2269
    Aihe