Varsin usein tällä palstalla näkee pyörivän kysymyksiä suurten lukujen (tai ainakin väitteitä sen suurimman nimetyn luvun) nimistä. Oleellista suurimman nimetyn luvun tittelin saannissa (vähänkään yleisemmin hyväksytyssä merkityksessä) on se, että määrittelyssä käytettävän formalismin tulee olla oleellisesti vahvempi kuin tittelin aiemman haltijan määrittelyssä käytetty. Muuten luku ei ansaitse edes yleisesti käytössä olevaa nimeä. Tavallaan kilpailutettavat luvut ovat vain määrittelyformalismiensa konkreettisia edustajia sellaisilla parametrien arvoilla, joilla aiemmat kilpailijat ovat osoitettavissa pestäviksi.
Jos aiempi suurin nimetty luku on x, niin pelkkä x 1, x 2, x*2, x*x, x^x, tai edes x^(x^(… x…)), jossa sisäkkäisyystasoja on x, tai x^(x^^(x^^^(… x…))) jne. ei kelpaa alkuunkaan, koska noilla toimenpiteillä saadaan aikaan (nykytilanteessa) vain täysin mitätön (nimenomaan suhteellisin termein) edistys verrattuna aiemmin käyttöön otetun vahvimman formalismin tuottamaan etuun verrattuna sitä aiemmin käytettyihin formalismeihin pyrittäessä määrittelemään mahdollisimman suuri luku. Lisäksi koska tässä yhteydessä luvun tulee olla äärellinen ja täsmällisesti määritelty, niin sen määrittelyssä ei voida käyttää ääretöntä.
Googology Wikian mukaan suurin nimetty luku on jo jonkin aikaa ollut BIG FOOT (11.11.2014-, Wojowun määrittelemänä ja Sbiis Saibianin nimeämänä). Määrittelytapa on hyvin samankaltainen kuin aiemman suurimman nimetyn luvun määrittelyssä käytetty, mutta suuruusluokkaan oleellisesti vaikuttavana lisänä on se, että käytössä on ensimmäisen asteen joukkoteorian laajennus.
http://googology.wikia.com/wiki/BIG_FOOT
Aiempi suurin nimetty luku oli Rayon luku (Agustin Rayo, 26.01.2007-), jonka määrittelyssä otettiin (karkeasti ilmaisten) käyttöön diagonalisointi liittyen ensimmäisen asteen joukkoteorialla kuvattavissa oleviin ilmauksiin.
http://googology.wikia.com/wiki/Rayo's_function
Varsin kookkaita, mutta suuruusluokiltaan selvästi näitä pienempiä ovat myös esimerkiksi SSCG- (Friedman), TREE- (Kruskal) ja Xi- (Goucher) funktioihin perustuvat, niiden parametrien pienehköihin arvoihin liittyvät (ainakin matemaatikoiden varsin hyvin tuntemat luvut), joille luvuille ei kuitenkaan ole määritelty iskeviä nimiä.
Esimerkiksi SSCG(3) >> TREE(TREE(… TREE(3)…)), jossa sisäkkäisyystasoja on TREE(3) kappaletta. TREE(3):n erittäin heikko alaraja toisaalta on A(A(… A(1)…)), jossa A() on Ackermannin funktion tietty versio (liittyen hyperoperaatioiden käyttöön) ja sisäkkäisyystasoja A(187196) kappaletta. Eli, TREE(3) >> A(A(187196))(1) >> A(64)(4) ≈ G, jossa G on kaikkien (tai siis ainakin joidenkin) tuntema Grahamin luku. Myös esimerkiksi Xi[50] > G.
Suurin nimetty äärellinen luku
Infinity_scraper
0
540
Vastaukset
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Sannan kirja USA:n bestseller!
"Congratulations to Sanna Marin's HOPE IN ACTION, officially a USA TODAY bestseller!" Kertoo Scribner. Mitäs persut tä3910563Yritystuet 10 mrd. vuodessa, eli yrittäjäriski valtiolla kuten kommunismissa
Pelkästään Viking Linen viinanhakuristeilyitä sponsoroidaan 20 miljoonalla eurolla vuosittain. Dieselin verotukikin on12610122- 217921
Sture Fjäder haluaa tuensaajien nimet julki
Kokoomuspoliitikko haluaa yli 800 euroa kuukaudessa tukia saavien nimet julki. Ehkä olisi syytä julkaista myös kuvat? h1776324Metsäalan rikolliset
Jokohan alkaa vähitellen kaatua kulissit näillä ihmiskauppaa harjoittavilla firmoilla.304892- 554717
Ruotsalaistoimittaja: "Sanna Marinin saunominen saa minut häpeämään"
Sanna Marinin kirja saa täyslaidallisen ruotsalaislehti Expressenissä perjantaina julkaistussa kolumnissa.....voi itku..1174056Maahanmuuttajat torjuvat marjanpoiminnan - "emme ole rottia"
Ruotsalaisen journalistin selvitys paljasti, miksi maahanmuuttajat kieltäytyvät työstä. Taustalla vaikuttavat kulttuuris1243413- 623127
Adonikselle
Kuvittelitko oikeasti, että ootan sua? Kuvittelitko, että voit noin vain vetäyttä ja kun tulet takaisin, kaikki on niin2213060