Osoita, että a**0 = 1

cfg7

Kaikilla positiivisilla a arvoilla.

14

211

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • cfg7

      Lisätään vielä, että vanha Casion funktiolaskin ilmoittaa 0**0 olevan ---E---. Sen sijaan tietokneen laskin antaa arvoksi 1.

    • EiNiinVaikea

      1 = a^1/a^1 = a^(1-1) = a^0

      x^x raja-arvo =1 kun x->0 mutta ei päde kaikissa tapauksissa jossa lähestytään 0^0.

      • Ohman

        Ei niin helppoa. Tuo a^1/a^1 = a^(1-1) on teoreema joka seuraa potenssifunktion määritelmästä mutta se pitäisi todistaa jos on mieli todistaa tuo kysytty asia aksioomeista lähtien.

        Joten todistuksesi ei kelpaa.

        Ohman


      • EiNiinVaikea

        No ei tuossa ole kyse potenssifunktiostakaan vaan vakion potenssista. Sille potensille on määritelty tietyt laskusäännöt ja jotta ne pitäisivät paikkansa kun kantaluku ja potenssi ovat samat osamäärässä, täytyy olla että a^0 = 1. Mutta voit saivarrella tuota vaikka maailman ääriin, sanon kuin eräs oomanni että lopetan keskustelun tähän.


      • Ohman

        Aksiomaattisessa teoriassa on aksioomat ja sovitut päättelysäännöt. Teorian teoreemoja ovat itse aksioomat ja sitten niistä noilla sovituilla päättelysäännöillä johdetut lauseet. Jos aksioomista lähtien on todistettava jotain, esim. tuo a^0 = 1 kun a > 0 niin ei siinä todistuksessa voi esiintyä muita todistamattomia lauseita kuin aksioomat. Muut on todistettava.Sinun todistuksesi ei ole tällainen.

        Tällainen "rigorous" matematiikka on tietysti enemmän tai vähemmän maallikoille "saivartelua". Mutta jos todistusta pyydetään pitäisi sellainen myös antaa.Lisään vielä, että vaikka mielestäsi kyse on "vakion potenssista" niin kyllä tässä pyydettiin näyttämään että lause pitää paikkansa jokaiselle reaaliluvulle a >0.

        Eivät ne "nokkelat" vastaukset aina ole samanarvoisia kuin täsmälliset vastaukset.

        Ohman


    • PoisSaivartelut

      Wikipedia:
      Potenssin tulkinta kertolaskun kautta ei kerro, mitä luvun nollas potenssi olisi: eihän ole olemassa tuloa, jossa on 0 tulon tekijää. Mikäli halutaan, että luku voidaan korottaa myös nollanteen potenssiin, täytyy sopia, mitä nollannella potenssilla tarkoitetaan. Periaatteessa tämä sopimus voitaisiin tehdä täysin mielivaltaisesti, mutta useimmissa tapauksissa edellä esitetyt potenssin laskusäännöt eivät pätisi nollansilla potensseilla. Kun sovelletaan laskusääntöä potenssiin a^0, jossa a on nollasta eroava reaaliluku, saadaan:
      a^0 = a^(1-1) = a^1/a^1 = a/a = 1.
      Siis luvun nollannen potenssin on oltava aina 1, mikäli halutaan laskusäännön a^m/a^n = a^(m-n) pätevän myös tapauksessa m = n. Siksi määritellään
      a^0 = 1
      kaikilla nollasta eroavilla reaaliluvuilla a. Näin määritellen myös muut potenssin laskusäännöt ovat voimassa nollansille potensseille

      • Ohman

        Tuo Wikipedia-juttu on asian selittelyä, ei täsmällistä matemaattista esittämistä.

        Ohman


      • cfg7

        Näinkin voi "argumentoida"
        a**3 = 1*a*a*a
        a**2 = 1*a*a
        a**1 = 1*a
        a**0 = 1


    • Ohman

      Jos luonnollisten lukujen joukko N = (1,2,3,...) ja x on reaaliluku niin reaaliluku x^n määritellään jokaiselle luonnolliselle luvulle n näin:

      x^1 = x ja x^(n 1) = x*x^n

      Jos x on reaaliluku ja x=/0 niin x^n =/ 0. Todistus: Koska x =/ 0 ja x^1 = x niin x^1 =/ 0.Koska x^2 = x^(1 1) = x*x^1 = x*x niin x^2 =/ 0 . Nyt reaalilukujen aksioomeista voidaan todistaa että jos ab = 0 niin joko a=0 tai b=0 (en nyt esitä tässä sitä) . Siis jos olisi x^2 = x*x = 0 niin olisi x= 0 vastoin oletusta.

      Oletetaan nyt että siitä, että x^n =/ 0 seuraa x^(n 1) =/ 0. Tämä siis pätee kun n = 1.Tällöin x^(n 2) = x*x^(n 1) =/ 0 ja induktiolla seuraa että kaikille luonnollisille luvuille n pitää paikkansa että jos x=/ 0 niin x^n =/ 0.

      Nyt seuraa määritelmä:

      Jos n on kokonaisluku, x on reaaliluku ja x=/ 0 niin x^0 = 1 ja x^(-n)= (x^n)^(-1) missä tämä jälkimmäinen merkintä tarkoittaa luvun x^n käänteislukua kertolaskussa.

      Tuo x^0 = 1 on siis määritelmä.

      Nyt voidaan todistaa ettäjos n ja m ovat kokonaislukuja ja x =/ 0 niin


      x^n * x^m = x^(n m) ja x^n/x^m = x^(n-m)

      En rupea tätäkään tässä nyt todistamaan.Mutta todistuksen se vaatii.

      On kuitenkin jo aiemmin määritelty että x^0 = 1.Sitä ei todisteta.


      Jos taas puhuttaisiin potenssifunktiosta x^r missä r on reaaliluku niin modernilla tavalla esitettynä ensin määritellään funktio luonnollinen logaritmi ln: (0,inf) -> R näin:

      ln(x) = Int(1,x) (1/t) dt.

      Tämän jälkeen määritellään eksponentiaalifunktio exp: R -> (0,inf) tuon ln-funktion käänteisfunktiona: exp = ln^(-1).

      Nyt potenssi x^r missä r on reaaliluku määritellään siten että se on funktio p(r, ): (0,inf) -> (0,inf) ja p(r,x) = exp(r ln(x)) kun x kuuluu väliin (0,inf).

      Tämä määritelmä on yhtäpitävä tuon aiemman määritelmän kanssa silloin kun neksponentti r on kokonaisluku.

      Määritelmästä tietenkin seuraa että jos x=/ 0 niin x^0 = p(0,x) = exp(0*ln(x)) = exp(0) = exp(ln(1)) = 1. Tietenkin taas on ensin todistettava että ln(1) = 0.

      En nyt rupea setvimään tuota tapausta x= 0. Voidaan tietysti yksinkertaisesti määritellö 0^r = 0 kun r =/ 0. Mutta 0^0 on epämääräinen muoto.

      Silloin kun on tilanne että f(a) ei ole määritelty mutta lim(x -> a) f(x) on olemassa voidaan määritellä, että f(a) on tuo limes. Mutta se on siis määritelmä, määritelty funktion arvo. 0^0-tapauksessa tällaista limestä ei ole.

      Siinäpä sitä "saivartelua". Enkä nytkään saivarrellut ihan jokaista yksityiskohtaa vaan jätin joitain todistuksia vain maininnalle "voidaan todistaa".

      Ohman

      • cfg7

        Kiitoksia Ohman. Täytyy vähän "sulatella".


    • PoisSaivartelut

      Ohman: "Jos aksioomista lähtien on todistettava jotain, esim. tuo a^0 = 1 kun a > 0 niin ei siinä todistuksessa voi esiintyä muita todistamattomia lauseita kuin aksioomat. Muut on todistettava. Sinun todistuksesi ei ole tällainen."

      Ohman: "Nyt seuraa määritelmä:Jos n on kokonaisluku, x on reaaliluku ja x=/ 0 niin x^0 = 1 ja x^(-n)= (x^n)^(-1) missä tämä jälkimmäinen merkintä tarkoittaa luvun x^n käänteislukua kertolaskussa.Tuo x^0 = 1 on siis määritelmä."

      Koeta nyt päättää todistetaanko a^0=1 vai määritelläänkö niin!

      • Ohman

        Sanoin jutussani useamman kerran että se,että x*0 = 1 kun x=/ 0, on määritelmä.Sitä e i todisteta.

        Mutta jos jotain todistetaan todistuksen pitää olla sellainen kuin kuvasin.

        Ohman


    • 0Höppänä

      Huomasin hauskasti, että ei on likimain "2,7 kertaa neliöjuuri -1".

    • Tärkeää

      Jukka-Pekka vs Matti Kyllönen

      Jukka-pekka ja matti olivat samassa selostamossa, jukapekka selosti jalkapallo-ottelua mansester sity vs suomen leijonat, ja matti selosti Formula GB-kisaa.

      Yht'äkkiä Jukka-Pekka hyppäsi pöydälle ja otti kuri asennon. Matti jatkoi selostamista eikä reagoinut mitä Juka-Pekka aikoo. JUkka-pekka potkaisi kuusi kertaa mavalla mattia päähän. Viimeisellä pitkulla Matti lensi 16 metriä peräseinään, ja pökertyi.

      Jukka-Pekka käytti matin tiedottomuuden hyväksi, ja potki Mattia nurkkaa vasten niin, että Matilta tuli oksennus. Kun Matti heräsi niihin yrjöihin, hän sanoi Jukka-Pekalle, että teen sinusta koiranmakkaraa.

      Matti ponkaisi yloös, ja otti zenkutsudashin (eräär asiantuntijat ovat sanoneet, että tästä asennosta voi hyökätä jopa 97 boforin voinalla), Niinpä Matti hyökkäsi ja veti oisukilla jukka-pekkaa sydämmeen. Jukka-pekka kuoli iskusta saamiinsa vammoihin.

      Kun jukka-pekka makasi elottomana lattialla, >Matti potki Jukka-Pekan ruumiin käytännössä jauhelihalle, jota voi tajota koirille.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Mitä sä pelkäät

      Ettei tää etene?
      Ikävä
      101
      3791
    2. Satuit vain olemaan

      Ensimmäinen joka avasi minussa sen nähdyksi ja rakastetuksi tulemisen puolen. Pitäisi vain muistaa että et ole ainoa. Se
      Ikävä
      48
      2711
    3. Vieläkö toivot, että kuulisit

      Minusta? Vai suutuitko kun en pystynyt vastaamaan sinulle?
      Ikävä
      114
      2539
    4. 24/7 sinä mielessä, ihan jatkuvalla syötöllä

      Aamulla herätessä, päivällä melkein nonstop, illalla nukkumaan mennessä, öisin herätessä. Mikä viddu tässä on 🤣
      Ikävä
      39
      2038
    5. Jotain pitää nyt keksiä että sinut näkisi

      Ensiviikolla viimeistään. Tälle on pakko saada kunnon piste tai sitten aloitetaan loppuelämä yhdessä, tulen hulluksi muu
      Ikävä
      30
      1807
    6. Mulla tulee vaan niin

      Paha olo siitä mitä teidän välillä on. Vaikka se on sun päätös mitä haluat. Tuntuu että menetän jotakin vaikka tiedän et
      Ikävä
      22
      1581
    7. Rakastan sua

      Tänäänkin, eilenkin, varmaan huomennakin..
      Ikävä
      27
      1552
    8. En tunne, en ymmärrä

      enkä muista 😱
      Ikävä
      22
      1358
    9. Mitkä olivat viimeiset sanasi ikävoinnin kohteellesi

      Ja milloin? Mitä olisit sanonut jos olisit tiennyt että ne jäävät viimeisiksi -ainakin toistaiseksi?
      Ikävä
      70
      1305
    10. Olikohan se

      Kuitenkin niin, että kiinnostuit minusta ihan tosissaan. Loukkaannuit, kun en ollutkaan valmis tapaamaan sinua.. Pelkäsi
      Ikävä
      8
      1291
    Aihe