Porataan Maapallon läpi reikä.

toinen.nimimerkki

Oletetaan että Maa on pallo ja homogeeninen kappale ja sen tiheys on sama kaikkialla eikä ole olemassa mitään vitsejä kivensyöjistä.
Oletetaan että Maan läpi on porattu pyöreä sylinterimäinen reikä, joka on 1 m halkaisijaltaan. Pudotetaan reikään pieni kivi niin että se on pudotettaessa 1 mm sivussa reiän akselilta. Kauanko kestää että kivi kopsahtaa reiän seinään?

31

395

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Olettaja

      Vielä oletetaan, että tehtävä kuuluu enemmän fysiikkaan kuin matematiikkaan.

      • Lisää-oletuksia

        Porataanko reikä napojen välille vai muualle ?
        Mihin suuntaan lähtöasema on 1 mm sivussa ?
        Huomioidaanko maan pyörimisliikkeen lisäksi kuun vetovoima, prekessio tai muita maan liikkeeseen vaikuttavia tekijöitä ?


    • kalileisto

      Vastataan nyt että 1 sekunti, kun ei noista luvuista oikein muuta saa...

      • Oletetaan-nyt-lisää

        Jos lähdetään siitä että vaikuttavina voimina on vain gravitaatio ja maan pyörintäliike ja reikä on kairattu päiväntasaajalle, g = normaali keskiarvo ( noin lyhyellä matkalla g.n muutoksen vaikutus aikaan olisi olematon) ja kivi pudotetaan reiän keskelle, koska mainitun 1 mm sivun suuntaa ei ole kerrottu.

        Noilla lähtökohdilla aika olisi n. 11.2 s.


      • Noinkohan

        Onkohan tuo laskettu pyörimismäärän säilymislain perusteella?


      • Oletetaan-nyt-lisää
        Noinkohan kirjoitti:

        Onkohan tuo laskettu pyörimismäärän säilymislain perusteella?

        Ei ole.


      • Noinkohan
        Oletetaan-nyt-lisää kirjoitti:

        Ei ole.

        Minä laskin. Sain 11,1 s.


      • Noinkohan

        Laitetaan nyt tuo laskelma näkyviin. Jos kivi putoaa syvyydelle s maan sisään, on sillä aluksi maanpinnan nopeus V mutta pyörimismäärän säilymisen takia nopeus kasvaa. Kun oletetaan että s on hyvin pieni maan säteeseen R verrattuna, tulee kiven nopeuden kasvuksi dv syvyydellä s päiväntasaajalla:
        dv = (V/R)*s = (2*pii/T)*s missä T on maapallon pyörähdysaika (23,93 h)

        Toisaalta reiän keskipisteen nopeus hidastuu syvyyden funktiona ja nopeuden vähenemä on yhtä kuin edellä laskettu ds. Mutta kun lasketaan kiven siirtymää reiän keskiakselin suhteen pitää ottaa keskinopeus matkalla s, joka on puolet nopeudesta syvyydellä s, eli ds.

        Putoamissyyvyyttä ja putoamisaikaa yhdistää yhtälö:
        s = g*t^2/2

        Kiven etäisyys keskipisteestä on siten:
        dv*t = (pii/T)*g*t^3

        Eli t = cbrt(0,5*23,93*3600/3,14*9,81) = 11,2 (tarkkaan laskien)


      • Oletetaan-nyt-lisää
        Noinkohan kirjoitti:

        Laitetaan nyt tuo laskelma näkyviin. Jos kivi putoaa syvyydelle s maan sisään, on sillä aluksi maanpinnan nopeus V mutta pyörimismäärän säilymisen takia nopeus kasvaa. Kun oletetaan että s on hyvin pieni maan säteeseen R verrattuna, tulee kiven nopeuden kasvuksi dv syvyydellä s päiväntasaajalla:
        dv = (V/R)*s = (2*pii/T)*s missä T on maapallon pyörähdysaika (23,93 h)

        Toisaalta reiän keskipisteen nopeus hidastuu syvyyden funktiona ja nopeuden vähenemä on yhtä kuin edellä laskettu ds. Mutta kun lasketaan kiven siirtymää reiän keskiakselin suhteen pitää ottaa keskinopeus matkalla s, joka on puolet nopeudesta syvyydellä s, eli ds.

        Putoamissyyvyyttä ja putoamisaikaa yhdistää yhtälö:
        s = g*t^2/2

        Kiven etäisyys keskipisteestä on siten:
        dv*t = (pii/T)*g*t^3

        Eli t = cbrt(0,5*23,93*3600/3,14*9,81) = 11,2 (tarkkaan laskien)

        Oliko tehtävän glou siinä että maan pyörähdysaika (w) ei ole 24 h, vaan lyhyempi ?
        Muuten looginen liikeyhtälö johtaa suoraan kaavaan t ³ = w/(2piig)


      • Noinkohan

        Niin, minä johdin saman kaavan omalla tavallani.


      • Huutiukko
        Oletetaan-nyt-lisää kirjoitti:

        Oliko tehtävän glou siinä että maan pyörähdysaika (w) ei ole 24 h, vaan lyhyempi ?
        Muuten looginen liikeyhtälö johtaa suoraan kaavaan t ³ = w/(2piig)

        t^3 = w/(2 pii g)
        w:n dimensio on s ja g:n dimensio on m/s^2 joten suureen t^3 dimensioksi tulee s^3 / m ja ajan dimensioksi siis s/m^(1/3).

        Noinkohan?


      • foccaultti

        kahdeksantoista minuuttia


      • laskentamalli-vain
        Huutiukko kirjoitti:

        t^3 = w/(2 pii g)
        w:n dimensio on s ja g:n dimensio on m/s^2 joten suureen t^3 dimensioksi tulee s^3 / m ja ajan dimensioksi siis s/m^(1/3).

        Noinkohan?

        Lausekkeesta on jätetty kirjoittamatta kerroin 1 , jonka laatu on m.
        Kun matkan lause ½gt2 =½ m esitetään kaavamaisesti t² = 1/g, niin jos siihen lisättäisi vain yhden tekijän dimensio niin sekaannus olisi vielä suurempi.


      • Noinkohan
        Oletetaan-nyt-lisää kirjoitti:

        Oliko tehtävän glou siinä että maan pyörähdysaika (w) ei ole 24 h, vaan lyhyempi ?
        Muuten looginen liikeyhtälö johtaa suoraan kaavaan t ³ = w/(2piig)

        Tuossa Otetaan-nyt-lisää kaavassa tuo 1/2 tarkoittaa puolta metriä. Pitäisi kirjoittaa:
        t ³ = w*r/(pii*g) missä d on tuon reiän säde.


      • Orwell-1984
        laskentamalli-vain kirjoitti:

        Lausekkeesta on jätetty kirjoittamatta kerroin 1 , jonka laatu on m.
        Kun matkan lause ½gt2 =½ m esitetään kaavamaisesti t² = 1/g, niin jos siihen lisättäisi vain yhden tekijän dimensio niin sekaannus olisi vielä suurempi.

        1/2 g t2 =gt


      • Huutiukko
        laskentamalli-vain kirjoitti:

        Lausekkeesta on jätetty kirjoittamatta kerroin 1 , jonka laatu on m.
        Kun matkan lause ½gt2 =½ m esitetään kaavamaisesti t² = 1/g, niin jos siihen lisättäisi vain yhden tekijän dimensio niin sekaannus olisi vielä suurempi.

        Kyllä fysiikan kaavat on mahdollista ja pitäisi kirjoittaa ilman mitään "sekaannuksia".Pitäisi vain vaivautua vähän ajattelemaan.


      • Noinkohan

        Sori, piti olla r.


    • qwer.oiuy

      Entäs jo reikä onkin porattu navalta navalle? Mahtaako vaikuttaa Maan pyörähdysaika?

      • Eipä-niin

        Siinä vaikuttaa kuun ja muiden planeettojen vetovoimat ja prekessio ja aikakin on eri mittaluokkaa, eli taitaa kivi keretä jojoilla noita 1.5 h matkoja jo useamman kerran.


      • Orwell-1984
        Eipä-niin kirjoitti:

        Siinä vaikuttaa kuun ja muiden planeettojen vetovoimat ja prekessio ja aikakin on eri mittaluokkaa, eli taitaa kivi keretä jojoilla noita 1.5 h matkoja jo useamman kerran.

        Entäs auringon vetovoima? Entäs aurinkokunnan liike Linnunradan keskuksen ympäri ja Linnunradan tasoa vastaan? Entäs Linnunradan liike kohti Suurta Attraktoria?Ota nyt kaikki huomioon!


    • testattuontämä

      Kokeilin pudottaa 7 kerroksisen talon katolta kiven, ei liikkunut osumakohta sivusuunnassa ollenkaan. Eli kun pallo pyörii niin kivi liikkuu mukana, eli ei osu mihinkään vaan hurahtaa läpi pallosta, mutta putoaa takaisin ja tekee jojo liikettä kunnes pysähtyy boltsin ytimeen.

      • NoinhanSeOn

        Kyllä se noin millin verran poikkeaa näillä leveysasteilla maahan tullessaan. Ja jos menisi maapallon läpi, menisi soikiorataa. Navalta navalle tuollinen edestakainen jojotus olisi lähempänä totuutta.


      • Aika kiva tehtävä !
        Edellä lasketut tulokset ovat pohjautuneet siihen että suorakulmaisessa koordinaatistossa gravitaation suunta on vakio, mutta todellisuudessa maan pyöriessä suunta kiinteässä koordinaatistossa muuttuu, joten todellinen aika onkin pidempi.


      • Noinkohan

        Omassa laskelmassani olen kiinnittänyt koordinaatiston reiän suun liiketilaan ja tarkastellut kiven nopeuden muutoksia alkutilaan verrattuna. Kun syvyys jossa kosketus reiän seinämään tapahtuu, on 0,6 km luokkaa, ja maan säde on 6000 km, on selvää, että linearisoinnista aiheutuva virhe on mitätön. Ja sama tulos on saatu toisesta lähtökohdasta laskien.


    • 243r24t42

      Koska reiästä purkautuisi suurella paineella ylöspäin kuumaa lähes kaasumaista sisusta ei pallo/ kivi pääsisi koskaan perille.

    • toinen.nimimerkki

      Entä jos oletetaan, että Maapallo ei pyöri. Meneekö kivi suoraan Maan keskipisteen kautta toiselle puolelle Maapalloa?

    • Noinkohan

      Kun tarkemmin ajattelen, taisi tulla laskemissani virhe. Pyörimislain säilymislaista saadaan kiven maanpinnan suuntaisen nopeuden kasvu dv verrattuna nopeuteen maanpinnalla:
      dv = (V/R)*s = (2*pii/T)*s missä T on maapallon pyörähdysaika (23,93 h) ja s on putoamissyvyys.

      Toisaalta reiän keskipisteen maanpinnan suuntainen nopeus vähenee yhtä paljon, eli kiven suhteellisen nopeuden kasvu siihen verrattuna on 2*dv.

      Putoamissyyvyyttä ja putoamisaikaa yhdistää yhtälö:
      s = g*t^2/2

      Jolloin saadaan:
      2*dv = (2*pii/T)*g*t^2

      Tuo kun integroidaan, saadaan kiven tenemä matka rieän keskijanalta, jonka pitää olla yhtä kuin reiän säde r.
      r = (2/3)*pii*g*t^3/T

      Eli t = cbrt(3*r*T/(2*pii*g))

      Ja nyt tulisi t = 12,8 s.

      • Joo näin.
        Periaatteessa käyttämäsi kulman tai sen tangentin sijaan olisi käytettävä kulman siniä dv-lausekkeessa, joskin näin pienillä kulmilla ei tulokseen ole mitään vaikutusta.


    • Hallaahon.äänestäjä7

      Jos Maa siis oletetaan homogeeniseksi palloksi on yhdentekevää porataanko reikä

      a) Maan keskipisteen kautta
      b) jostain vinosti läpi eli sivusta katsottuna reikä olisi ympyrän sekantti joka lähtisi vaikka Helsingistä ja päätyisi ulos Tukholmasta

      Sama aika

      Kun siis menette rannalle, ja teette pienen putken hiekkaan sanotaan syvin kohta noin vaikka 5 senttiä maan alla ja panette hiekanjyvän putken päähän se valuu toiseen päähän ja pomppaa takaisin ja aika on vajaa puolitoista tuntia

      ilmanvastus ja kitka estävät teiltä tämän kokeen

      VIELÄ: tämä on täsmälleen sama aika kuin kiertoaika Maan ympäri matalalla (esim. satelliitti maassa kiinni) eli 2 pi sgrt(R/g) eli R = 6 378 km, g = 9,8 m/s2, siis aika on 5068,845897 sekuntia 84,48 minuuttia

      JOS TÄTÄ LÄHDETÄÄN HIENONTAMAAN siten että otetaan Maan pyörimisliike ("keskipako", Coriolis ) huomioon niin kivi törmää putken seinään ja se sitten siitä

    • Ohman

      Oletus: maa on homogeeninen pallo eikä pyöri. Putki porataan korkeudelle h keskipisteestä ja kitka putkessa = 0.Maapallon keskipiste on x,y-koordinaatiston origossa.

      x'' kx = 0 missä k = GM/R^3, M = maapallon massa, R = maapallon säde.

      Ratkaisu on x = sqrt(R^2 - h^2) cos(sqrt(k) * t)

      Matkaan lähdetään kun t = 0 ja puolivälissä ollaan kun t = pi/(2 * sqrt(k)).
      Koko matkaan kuluu aikaa T = pi/sqrt(k) = (pi * R^(3/2)) /sqrt(GM)

      M = 5,9737 * 10^24 kg , G =6,67259 * 10^(- 11) N kg^(- 2) m^2, R = 6,37814 * 10^6 m

      T = 2534,67 s = 42,24 minuuttia ja edestakaiseen matkaan kuluu 2T = 84,48 minuuttia.

      No Hallaahon.äänestäjä? tuon luvun jo ilmoittikin mutta piti ihan itse laskea että tajusin varmasti mistä se tulee. Paninpa siis tämän laskelman nyt sitten tännekin.

      Oikeasti putkessa on tietenkin kitkaa, kappaleeseen kohdistuu suoraan alaspäin eli kohtisuoraan putken pohjaa vasten gravitaation y-komponentti. Tämä aiheuttaa x-suuntaisen kitkavoiman.Mutta liikutaan nyt liukkaalla!

      Ohman

    Ketjusta on poistettu 1 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. En tullut, koska käytit päätäsi.

      Ja koska ihmiset pilaavat sillä mahdollisuudet, kaikki mikä toimii vaatii oman lähestymistapani. Kun levittää punaisia m
      Ikävä
      37
      2736
    2. Miten kaivattusi teki sinuun lähtemättömän vaikutuksen?

      Minulla kävi niin, että hän laittoi ruokaa, kun olin nälkäinen. Tie miehen sydämeen käy vatsan kautta.
      Ikävä
      89
      1174
    3. Alkon myynti putosi kesäkuussa 10 prosenttia

      Niin se hallitus tuhoaa valtion verokertymää ylisuurella alkoholiverolla, kun kansalaiset hankkivat juomansa ulkomailta.
      Maailman menoa
      127
      979
    4. Oliko mies vetäytyminen

      Toimiva veto? Miten meille kävi. Ei hyvin ja mahdottomalta tuntuu tilanne nyt.
      Ikävä
      60
      950
    5. Mitä söitte Hänen kanssaan yhdessä viimeksi?

      Tällainen vihjeketju:)
      Ikävä
      66
      907
    6. Ulosotossa olevan tulisi saada itse päättää

      Maksetaanko hänen ulosotossa olevia velkoja takaisin yksi kerrallaan vai ripotellen pikku summia sinne tänne, kuten ulos
      76
      868
    7. Oon tässä pohtinut että se nainen

      Ei sovi sulle. Ihmetyttää mitä näet hänessä. Mieheltä miehelle
      Ikävä
      70
      815
    8. EU:lta tyly ratkaisu Temulle

      On se hyvä, että EU on vihdoin ja viimein puuttunut noiden Kiinan krääsän kauppiaiden toimintaan. https://www.is.fi/ta
      Maailman menoa
      99
      812
    9. Nainen on ihana

      ilta-päivää tosi söpölle naiselle 🤗😘☺ Jos saisin sinut nainen oisin onnellisin mies Etpäs tiedäkään keneltä tämä on?
      Ikävä
      25
      718
    10. Hallinto-oikeus kumosi valtuuston päätöksiä

      Teksti-tv kertoo, että valtuuston päätöksentekoon on osallistunut varavaltuutettu jolla ei ollut oikeutta osallistua. Mi
      Ähtäri
      30
      684
    Aihe