Tyhmä-kö-kysymys

matikkaonkivaa

Jos tunnetaan funktio esim. y^n y*sin(y) =x , niin onko jokin keino jolla se voidaan muuttaa muotoon y= f(x) ?

11

246

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • RobertTaylor
    • VeikkaanEttä

      Eksaktia funktiota ei taida löytyä !

      • Tuskin: Anna tehtävälle oma nimesi ja tule kuuluisaksi !


      • Tai tee sarjakehitelmä (y*sin(y)) :sta ja jää unholaan


      • Ohman

        Tässä on kyseessä se, että funktiolle x = x(y) pitäisi löytää käänteisfunktio y = y(x). Joskus tämä voi löytyä suljetussa muodossa, siis kaavana jolla y voidaan esittää x:n avulla.
        '
        Kommenteissa mainitut sarjakehitelmät eivät vielä sinänsä esimerkkisi ongelmaa ratkaise, niissähän on edelleen x lausuttuna y:n eri potenssien summana. On olemassa menetelmä nimeltä "sarjan kääntäminen" jolla voi onnistua sarjasta,jossa x on lausuttu y:n potenssien avulla , saamaan aikaan sarjan, jossa y on lausuttu x:n potenssien avulla eli saadaan funktiosta x = x(y) funktio y = y(x).

        Ohman


    • aeija

      Tuota sarjakehitelmää käyttämällä voidaan saada jotain aikaan parissa erikoistapauksessa, eli n=2 ja n=4, kun otetaan siitä sarjasta kaksi ensimmäistä termiä. Lisätermien ottaminen tekee ratkaisut mahdottomaksi, koska se y on ratkaistava siitä yhtälöstä. On ehkä mahdollista n=1, mutta en edes yritä.
      Noissa kahdessakin erikoistapauksessa x ≥ 0 ja lisäksi x:lle tulee ylärajat, joita ei ilman Wolframia saa selville.
      Laitan tähän nyt paperille jotakin: https://aijaa.com/I20o8m

    • Ei_aina

      Ei tässä tapauksessa. Funktio ei ole separoituva eikä injektiivinen, ts. sillä ei ole käänteisfunktiota kuvajoukolta alkukuvajoukolleen.

      • Entä-tämä

        Löytyykö funktiolle x = y*e^y käänteisfunktiota ?


      • laskee
        Entä-tämä kirjoitti:

        Löytyykö funktiolle x = y*e^y käänteisfunktiota ?

        Funktiolle x = y*e^y ei taida löytyä käänteisfunktiota suljetussa muodossa.


    • Ohman

      Kun x = W e^W niin ratkaisu W on Lambertin W-funktio. Välillä ( 0 <=x < inf) on yksi reaalinen ratkaisu joka on ei-negatiivinen ja kasvava. Välillä - 1/e < x < 0 on kaksi reaalista ratkaisua, toinen kasvava ja toinen vähenevä.Nämä ovat W:n päähaara Wp(x) ja toinen haara Wm(x).

      Voit piirrättää W-A:lla noiden kuvia ja nähdä miten kulkevat.Laita x =y*e^y ja inverse of x = y*e^y.

      Ohman

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Janne Ahonen E R O A A

      Taas 2 lasta jää vaille ehjää perhettä!
      Kotimaiset julkkisjuorut
      218
      4559
    2. Ja taas ammuttu kokkolassa

      Kokkolaisilta pitäisi kerätä pois kaikki ampumaset, keittiöveitset ja kaikki mikä vähänkään paukku ja on terävä.
      Kokkola
      28
      3290
    3. Tekisi niin mieli laittaa sulle viestiä

      En vaan ole varma ollaanko siihen vielä valmiita, vaikka halua löytyykin täältä suunnalta, ja ikävää, ja kaikkea muuta m
      Ikävä
      108
      2453
    4. Miksi ihmeessä?

      Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek
      Ateismi
      34
      2055
    5. Ootko huomannut miten

      pursuat joka puolelta. Sille joka luulee itsestään liikoja 🫵🙋🏻‍♂️
      Ikävä
      186
      1748
    6. Erika Vikman diskattiin, tilalle Gettomasa ja paluun tekevä Cheek

      Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek https://www.rumba.fi/uut
      Maailman menoa
      34
      1715
    7. Kuinka kauan

      Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?
      Ikävä
      113
      1423
    8. Kukka ampu taas Kokkolassa?

      T. olisi hetkeä aiemmin lähtenyt johonkin. Naapuri kai tekijä J.K., ei paljasjalkainen Kokkolalainen, vaan n. 100km pääs
      Kokkola
      7
      1350
    9. Pitääkö penkeillä hypätä Martina?

      Eivätkö puistonpenkit ole istumista varten.Ei niitä kannata liata hyppäämällä koskaa likaantuvat eikä siellä kukaan niit
      Kotimaiset julkkisjuorut
      221
      1276
    10. Kerropa ESA miten kävi tuomioiden

      Osaako ESA kertoa miten haukkumasi kunnanhallituksen kävi.
      Puolanka
      42
      1272
    Aihe