eksponentti- ja logaritmifunktio

Anonyymi

Hei.

Miten perustelette, että käyrien y=ln(x) ja y=e^x kuvaajat eivät leikkaa? Mulla oli tää joskus koekysymyksenä, ja kokeessa ei ollut käytössä mitään graafisia laskimia/muita, että olisin kuvasta voinut katsoa.

Oon yrittänyt esim. tutkia funktiota f(x)= ln(x)-e^x derivaatalla ja muuta, mutta en osaa ratkaista tuommosia yhtälöitä.

Tietty kokeilemalla löytyy esim. f'(0,5675)=0,0017373..., eli jos arvioin että se olisi derivaatan nollakohta, f(0,5675)=2,3303...>0 ja tutkimalla derivaatan merkkiä päättelen, että se on likimain pienin arvo ja siks ei olisi nollakohtia eli ratkaisuja yhtälölle.
Se ei kuitenkaan varmaan ole kovin hyvä perustelu, koska en voi tietää, pomppaako jossain kohdassa funktion kuvaaja nopeasti x-akselin alapuolella.

Miten siis perustelisitte?

8

188

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Ensiksi ln x on määritelty vain kun x>0. Lisäksi jos 0<x<1, on ln x<0 ja e^x>0. Siten mahdolliset leikkaiskohdat saadaan puolitasossa x>=1. Mutta ln x kasvaa nopeudella 1/x<1 ja e^x nopeudella e^x>1 kun x>1. Ainoa leikkauspiste voisi olla siis x=1. Mutta ln 1=0 ja e^1>0, joten leikkauspisteitä ei ole.

    • Anonyymi

      Eiköhän tuossa riitä, että perustelee, miksi e^x > x ja ln x < x.

    • Funktio e^x on määritelty,jatkuva ja derivoituva kaikilla arvoilla - inf < x < inf.
      Samoin funktio e^x - x. Kun x < 0 on e^x > 0 ja - x > 0 joten e^x - x >0 ja siis e^x > x.
      Kun x = 0 on e^x - x = 1 > 0.
      d/dx(e^x - x) = e^x - 1 > 0 kun x > 0. e^x - x on siis kasvava funktio ja e^x - x > 0 kun x> 0.

      Nähtiin, että kaikilla arvoilla x on e^x > x.

      ln(x) on määritelty ja jatkuva kun x > 0. Se saa kaikki arvot - inf < ln(x) < inf tuolla alueella x > 0.

      Edellä todistetusta seuraa, että e^(ln(x)) > ln(x) kun x > 0. Mutta e^(ln(x)) = x joten siis x > ln(x) kun x > 0.

      On siis e^x > x > ln(x) kun x > 0. Kuvaajat eivät voi leikata.

      • Anonyymi

        sen verran kiinnostaa, että kuka on Ohman itse?


      • Anonyymi
        Anonyymi kirjoitti:

        sen verran kiinnostaa, että kuka on Ohman itse?

        jee, jee, jees,... nyt tuli todella hyvä kysymys... kuka on Ohman, kuka on martta00 (tai ilman nollia) , kuka on aeija, kuka on KL... hmm... kukin, no mitäpä se oikeesti meille kuuluu


      • Pieni lisäkommentti:

        Koska d/dx ln(x) = 1/x > 0 on myös ln( ) kasvava funktio. Koska x > ln(x) on siis

        ln(x) > ln(ln(x)) > ln(ln(ln(x))) >...jne.

        Vastaavasti , koska e^x > x, niin e^(e^x)) > e^x, e^(e^(e^x)) > e^(e^x)) jne.

        Ohman = Ohman3


    • Anonyymi

      Seitenpuol kasiviis? Tä?

    • Anonyymi

      Otetaan vielä yksi tapa: tarkastellaan funktiota lnx/e^x. Väite on tosi, jos se on aina <1. Sen derivaatta on (1/x-lnx)/e^x. Nähdään, että funktio on ensin (kun x>0) kasvava, sitten saavuttaa maksimin kohdassa lnx=1/x ja sitten on laskeva. Nähdään että maksimikohta on välillä 1<x<e (likiarvo x=1,763). Ja nähdään, että maksimikohdassa tarkasteltava funktio <1.

    Ketjusta on poistettu 1 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Vedonlyöntiä .

      Olen valmis lyömään ison vedon , että homma kaatuu . Jos kerta Sivonen ei lähde mukaan , niin ei tuoho usko kukaan muuka
      Ähtäri
      32
      3365
    2. Mikä on pahinta, mitä kaivatullesi

      pelkäät tapahtuvan? Jos kuolemaa, vakavia sairauksia yms. ei lasketa?
      Ikävä
      103
      2555
    3. Turvaan tulleet lähettävät omia lapsiaan vaaraan - hullua

      MOT-ohjelman jakso ”Loma vaihtui kahleisiin” kertoi, kuinka Suomessa ja muualla Euroopassa asuvat somaliperheet lähettäv
      Maailman menoa
      73
      2527
    4. Mikä on sun mielestä suurin kusetus maailmassa?

      Mikä on sun mielestä suurin kusetus maailmassa?
      Ikävä
      104
      2136
    5. rakastan jotakin

      en uskalla sanoa sitä täällä ääneen
      Ikävä
      11
      1988
    6. Minkä tunteen tunnet

      juuri nyt? ap kiitollisuuden.
      Tunteet
      41
      1408
    7. Päivi Räsänen sai kutsun kongressiin todistajaksi.

      Pystyykö Päivi pysymään totuudessa ja kertomaan kongressille, että raamattu ei ole lakikirja jota pitäisi noudattaa poli
      Maailman menoa
      380
      1043
    8. Minkä kouluarvosanan (4-10) annat Thank God, sä tulit! sarjalle?

      Katsoitko Thank God, sä tulit!? Uusi viihdeohjelma ei ollut kaikkien makuun, mutta jotkut tykkäsivät. Minkä kouluarvos
      Tv-sarjat
      40
      867
    9. TVssä TomCruisen superjännä Vaarallinen tehtävä Mission Impossible Rogue Nation

      Alkaa uskomattomalla lentokone kuvauksella. Toimintaelokuvan jatko-osa agentti (Tom Cruise) on hankaluuksissa, kun järje
      Maailman menoa
      28
      818
    10. Kaikkea hyvää kaikki

      Kaikkea hyvää kaikki ja positiivisia ja hyviä asioita. Kylmää on kovia pakkasia. Pikku hiljaa kevättä kohti taas. Voimaa
      Ikävä
      6
      790
    Aihe