Hei.
Miten perustelette, että käyrien y=ln(x) ja y=e^x kuvaajat eivät leikkaa? Mulla oli tää joskus koekysymyksenä, ja kokeessa ei ollut käytössä mitään graafisia laskimia/muita, että olisin kuvasta voinut katsoa.
Oon yrittänyt esim. tutkia funktiota f(x)= ln(x)-e^x derivaatalla ja muuta, mutta en osaa ratkaista tuommosia yhtälöitä.
Tietty kokeilemalla löytyy esim. f'(0,5675)=0,0017373..., eli jos arvioin että se olisi derivaatan nollakohta, f(0,5675)=2,3303...>0 ja tutkimalla derivaatan merkkiä päättelen, että se on likimain pienin arvo ja siks ei olisi nollakohtia eli ratkaisuja yhtälölle.
Se ei kuitenkaan varmaan ole kovin hyvä perustelu, koska en voi tietää, pomppaako jossain kohdassa funktion kuvaaja nopeasti x-akselin alapuolella.
Miten siis perustelisitte?
eksponentti- ja logaritmifunktio
8
186
Vastaukset
- Anonyymi
Ensiksi ln x on määritelty vain kun x>0. Lisäksi jos 0<x<1, on ln x<0 ja e^x>0. Siten mahdolliset leikkaiskohdat saadaan puolitasossa x>=1. Mutta ln x kasvaa nopeudella 1/x<1 ja e^x nopeudella e^x>1 kun x>1. Ainoa leikkauspiste voisi olla siis x=1. Mutta ln 1=0 ja e^1>0, joten leikkauspisteitä ei ole.
- Anonyymi
Eiköhän tuossa riitä, että perustelee, miksi e^x > x ja ln x < x.
Funktio e^x on määritelty,jatkuva ja derivoituva kaikilla arvoilla - inf < x < inf.
Samoin funktio e^x - x. Kun x < 0 on e^x > 0 ja - x > 0 joten e^x - x >0 ja siis e^x > x.
Kun x = 0 on e^x - x = 1 > 0.
d/dx(e^x - x) = e^x - 1 > 0 kun x > 0. e^x - x on siis kasvava funktio ja e^x - x > 0 kun x> 0.
Nähtiin, että kaikilla arvoilla x on e^x > x.
ln(x) on määritelty ja jatkuva kun x > 0. Se saa kaikki arvot - inf < ln(x) < inf tuolla alueella x > 0.
Edellä todistetusta seuraa, että e^(ln(x)) > ln(x) kun x > 0. Mutta e^(ln(x)) = x joten siis x > ln(x) kun x > 0.
On siis e^x > x > ln(x) kun x > 0. Kuvaajat eivät voi leikata.- Anonyymi
sen verran kiinnostaa, että kuka on Ohman itse?
- Anonyymi
Anonyymi kirjoitti:
sen verran kiinnostaa, että kuka on Ohman itse?
jee, jee, jees,... nyt tuli todella hyvä kysymys... kuka on Ohman, kuka on martta00 (tai ilman nollia) , kuka on aeija, kuka on KL... hmm... kukin, no mitäpä se oikeesti meille kuuluu
Pieni lisäkommentti:
Koska d/dx ln(x) = 1/x > 0 on myös ln( ) kasvava funktio. Koska x > ln(x) on siis
ln(x) > ln(ln(x)) > ln(ln(ln(x))) >...jne.
Vastaavasti , koska e^x > x, niin e^(e^x)) > e^x, e^(e^(e^x)) > e^(e^x)) jne.
Ohman = Ohman3
- Anonyymi
Seitenpuol kasiviis? Tä?
- Anonyymi
Otetaan vielä yksi tapa: tarkastellaan funktiota lnx/e^x. Väite on tosi, jos se on aina <1. Sen derivaatta on (1/x-lnx)/e^x. Nähdään, että funktio on ensin (kun x>0) kasvava, sitten saavuttaa maksimin kohdassa lnx=1/x ja sitten on laskeva. Nähdään että maksimikohta on välillä 1<x<e (likiarvo x=1,763). Ja nähdään, että maksimikohdassa tarkasteltava funktio <1.
Ketjusta on poistettu 1 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Porvarimediat paniikissa demareiden huiman kannatuksen vuoksi
Piti sitten keksiä "nimettömiin lähteisiin" perustuen taas joku satu. Ovat kyllä noloja, ja unohtivat sen, että vaalit1748483KATASTROFI - Tytti Tuppurainen itse yksi pahimmista kiusaajista!!!
STT:n lähteiden mukaan SDP:n eduskuntaryhmän puheenjohtaja Tytti Tuppurainen on käyttäytynyt toistuvasti epäasiallisesti4537657Mikä siinä on ettei persuille leikkaukset käy?
On esitetty leikkauksia mm. haitallisiin maataloustukiin, kuin myös muihin yritystukiin. Säästöjä saataisiin lisäksi lei763890Lääppijä Lindtman jäi kiinni itse teosta
Lindtman kyselemättä ja epäasiallisesti koskettelee viestintäpäällikköä. https://www.is.fi/politiikka/art-20000117808521633726Juuri nyt! Tytti Tuppurainen on käyttäytynyt toistuvasti epäasiallisesti
Ai että mä nautin, Tytti erot vireille! "Käytös on kohdistunut avustajia ja toisia kansanedustajia kohtaan, uutisoi STT1183074Huomaatteko Demari Tytti ei esitä pahoitteluitaan
Samanlainen ilmeisesti kuin Marin eli Uhriutuu no he ovat Demareita ja muiden yläpuolella siis omasta mielestään552865Turvaan tulleet lähettävät omia lapsiaan vaaraan - hullua
MOT-ohjelman jakso ”Loma vaihtui kahleisiin” kertoi, kuinka Suomessa ja muualla Euroopassa asuvat somaliperheet lähettäv442081- 1262076
Puolen vuoden koeaika
Voisi toimia meillä. Ensin pitäis selvittää "vaatimukset" puolin ja toisin, ennen kuin mitään aloittaa. Ja matalalla pro231903Vedonlyöntiä .
Olen valmis lyömään ison vedon , että homma kaatuu . Jos kerta Sivonen ei lähde mukaan , niin ei tuoho usko kukaan muuka211841