eksponentti- ja logaritmifunktio

Anonyymi

Hei.

Miten perustelette, että käyrien y=ln(x) ja y=e^x kuvaajat eivät leikkaa? Mulla oli tää joskus koekysymyksenä, ja kokeessa ei ollut käytössä mitään graafisia laskimia/muita, että olisin kuvasta voinut katsoa.

Oon yrittänyt esim. tutkia funktiota f(x)= ln(x)-e^x derivaatalla ja muuta, mutta en osaa ratkaista tuommosia yhtälöitä.

Tietty kokeilemalla löytyy esim. f'(0,5675)=0,0017373..., eli jos arvioin että se olisi derivaatan nollakohta, f(0,5675)=2,3303...>0 ja tutkimalla derivaatan merkkiä päättelen, että se on likimain pienin arvo ja siks ei olisi nollakohtia eli ratkaisuja yhtälölle.
Se ei kuitenkaan varmaan ole kovin hyvä perustelu, koska en voi tietää, pomppaako jossain kohdassa funktion kuvaaja nopeasti x-akselin alapuolella.

Miten siis perustelisitte?

8

135

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Ensiksi ln x on määritelty vain kun x>0. Lisäksi jos 0<x<1, on ln x<0 ja e^x>0. Siten mahdolliset leikkaiskohdat saadaan puolitasossa x>=1. Mutta ln x kasvaa nopeudella 1/x<1 ja e^x nopeudella e^x>1 kun x>1. Ainoa leikkauspiste voisi olla siis x=1. Mutta ln 1=0 ja e^1>0, joten leikkauspisteitä ei ole.

    • Anonyymi

      Eiköhän tuossa riitä, että perustelee, miksi e^x > x ja ln x < x.

    • Funktio e^x on määritelty,jatkuva ja derivoituva kaikilla arvoilla - inf < x < inf.
      Samoin funktio e^x - x. Kun x < 0 on e^x > 0 ja - x > 0 joten e^x - x >0 ja siis e^x > x.
      Kun x = 0 on e^x - x = 1 > 0.
      d/dx(e^x - x) = e^x - 1 > 0 kun x > 0. e^x - x on siis kasvava funktio ja e^x - x > 0 kun x> 0.

      Nähtiin, että kaikilla arvoilla x on e^x > x.

      ln(x) on määritelty ja jatkuva kun x > 0. Se saa kaikki arvot - inf < ln(x) < inf tuolla alueella x > 0.

      Edellä todistetusta seuraa, että e^(ln(x)) > ln(x) kun x > 0. Mutta e^(ln(x)) = x joten siis x > ln(x) kun x > 0.

      On siis e^x > x > ln(x) kun x > 0. Kuvaajat eivät voi leikata.

      • Anonyymi

        sen verran kiinnostaa, että kuka on Ohman itse?


      • Anonyymi
        Anonyymi kirjoitti:

        sen verran kiinnostaa, että kuka on Ohman itse?

        jee, jee, jees,... nyt tuli todella hyvä kysymys... kuka on Ohman, kuka on martta00 (tai ilman nollia) , kuka on aeija, kuka on KL... hmm... kukin, no mitäpä se oikeesti meille kuuluu


      • Pieni lisäkommentti:

        Koska d/dx ln(x) = 1/x > 0 on myös ln( ) kasvava funktio. Koska x > ln(x) on siis

        ln(x) > ln(ln(x)) > ln(ln(ln(x))) >...jne.

        Vastaavasti , koska e^x > x, niin e^(e^x)) > e^x, e^(e^(e^x)) > e^(e^x)) jne.

        Ohman = Ohman3


    • Anonyymi

      Seitenpuol kasiviis? Tä?

    • Anonyymi

      Otetaan vielä yksi tapa: tarkastellaan funktiota lnx/e^x. Väite on tosi, jos se on aina <1. Sen derivaatta on (1/x-lnx)/e^x. Nähdään, että funktio on ensin (kun x>0) kasvava, sitten saavuttaa maksimin kohdassa lnx=1/x ja sitten on laskeva. Nähdään että maksimikohta on välillä 1<x<e (likiarvo x=1,763). Ja nähdään, että maksimikohdassa tarkasteltava funktio <1.

    Ketjusta on poistettu 1 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Aivosyöpää sairastava Olga Temonen TV:ssä - Viimeinen Perjantai-keskusteluohjelma ulos

      Näyttelijä-yrittäjä Olga Temonen sairastaa neljännen asteen glioomaa eli aivosyöpää, jota ei ole mahdollista leikata. Hä
      Maailman menoa
      94
      3231
    2. Pelotelkaa niin paljon kuin sielu sietää.

      Mutta ei mene perille asti. Miksi Venäjä hyökkäisi Suomeen? No, tottahan se tietenkin on jos Suomi joka ei ole edes soda
      Maailman menoa
      303
      1806
    3. Mikä saa ihmisen tekemään tällaista?

      Onko se huomatuksi tulemisen tarve tosiaan niin iso tarve, että nuoruuttaan ja tietämättömyyttään pilataan loppuelämä?
      Sinkut
      246
      1647
    4. Minkä merkkisellä

      Autolla kaivattusi ajaa? Mies jota kaipaan ajaa Mersulla.
      Ikävä
      90
      1480
    5. IL - VARUSMIEHIÄ lähetetään jatkossa NATO-tehtäviin ulkomaille!

      Suomen puolustuksen uudet linjaukset: Varusmiehiä suunnitellaan Nato-tehtäviin Puolustusministeri Antti Häkkänen esittel
      Maailman menoa
      407
      1471
    6. Nyt kun Pride on ohi 3.0

      Edelliset kaksi ketjua tuli täyteen. Pidetään siis edelleen tämä asia esillä. Raamattu opettaa johdonmukaisesti, että
      Luterilaisuus
      414
      1366
    7. Kiitos nainen

      Kuitenkin. Olet sitten ajanmerkkinä. Tuskin enää sinua näen ja huomasitko, että olit siinä viimeisen kerran samassa paik
      Tunteet
      2
      1290
    8. Esko Eerikäinen tatuoi kasvoihinsa rakkaan nimen - Kärkäs kommentti "Ritvasta" lävähti somessa

      Ohhoh! Esko Eerikäinen on ottanut uuden tatuoinnin. Kyseessä ei ole mikä tahansa kuva minne tahansa, vaan Eerikäisen tat
      Suomalaiset julkkikset
      38
      1127
    9. Hyväksytkö sinä sen että päättäjämme ei rakenna rauhaa Venäjän kanssa?

      Vielä kun sota ehkäpä voitaisiin välttää rauhanponnisteluilla niin millä verukkeella voidaan sanoa että on hyvä asia kun
      Maailman menoa
      346
      972
    10. Miksi Purra-graffiti ei nyt olekkaan naisvihaa?

      "Pohtikaapa reaktiota, jos vastaava graffiti olisi tehty Sanna Marinista", kysyy Tere Sammallahti. Helsingin Suvilahden
      Maailman menoa
      275
      955
    Aihe