Hei.
Miten perustelette, että käyrien y=ln(x) ja y=e^x kuvaajat eivät leikkaa? Mulla oli tää joskus koekysymyksenä, ja kokeessa ei ollut käytössä mitään graafisia laskimia/muita, että olisin kuvasta voinut katsoa.
Oon yrittänyt esim. tutkia funktiota f(x)= ln(x)-e^x derivaatalla ja muuta, mutta en osaa ratkaista tuommosia yhtälöitä.
Tietty kokeilemalla löytyy esim. f'(0,5675)=0,0017373..., eli jos arvioin että se olisi derivaatan nollakohta, f(0,5675)=2,3303...>0 ja tutkimalla derivaatan merkkiä päättelen, että se on likimain pienin arvo ja siks ei olisi nollakohtia eli ratkaisuja yhtälölle.
Se ei kuitenkaan varmaan ole kovin hyvä perustelu, koska en voi tietää, pomppaako jossain kohdassa funktion kuvaaja nopeasti x-akselin alapuolella.
Miten siis perustelisitte?
eksponentti- ja logaritmifunktio
8
195
Vastaukset
- Anonyymi
Ensiksi ln x on määritelty vain kun x>0. Lisäksi jos 0<x<1, on ln x<0 ja e^x>0. Siten mahdolliset leikkaiskohdat saadaan puolitasossa x>=1. Mutta ln x kasvaa nopeudella 1/x<1 ja e^x nopeudella e^x>1 kun x>1. Ainoa leikkauspiste voisi olla siis x=1. Mutta ln 1=0 ja e^1>0, joten leikkauspisteitä ei ole.
- Anonyymi
Eiköhän tuossa riitä, että perustelee, miksi e^x > x ja ln x < x.
Funktio e^x on määritelty,jatkuva ja derivoituva kaikilla arvoilla - inf < x < inf.
Samoin funktio e^x - x. Kun x < 0 on e^x > 0 ja - x > 0 joten e^x - x >0 ja siis e^x > x.
Kun x = 0 on e^x - x = 1 > 0.
d/dx(e^x - x) = e^x - 1 > 0 kun x > 0. e^x - x on siis kasvava funktio ja e^x - x > 0 kun x> 0.
Nähtiin, että kaikilla arvoilla x on e^x > x.
ln(x) on määritelty ja jatkuva kun x > 0. Se saa kaikki arvot - inf < ln(x) < inf tuolla alueella x > 0.
Edellä todistetusta seuraa, että e^(ln(x)) > ln(x) kun x > 0. Mutta e^(ln(x)) = x joten siis x > ln(x) kun x > 0.
On siis e^x > x > ln(x) kun x > 0. Kuvaajat eivät voi leikata.- Anonyymi
sen verran kiinnostaa, että kuka on Ohman itse?
- Anonyymi
Anonyymi kirjoitti:
sen verran kiinnostaa, että kuka on Ohman itse?
jee, jee, jees,... nyt tuli todella hyvä kysymys... kuka on Ohman, kuka on martta00 (tai ilman nollia) , kuka on aeija, kuka on KL... hmm... kukin, no mitäpä se oikeesti meille kuuluu
Pieni lisäkommentti:
Koska d/dx ln(x) = 1/x > 0 on myös ln( ) kasvava funktio. Koska x > ln(x) on siis
ln(x) > ln(ln(x)) > ln(ln(ln(x))) >...jne.
Vastaavasti , koska e^x > x, niin e^(e^x)) > e^x, e^(e^(e^x)) > e^(e^x)) jne.
Ohman = Ohman3
- Anonyymi
Seitenpuol kasiviis? Tä?
- Anonyymi
Otetaan vielä yksi tapa: tarkastellaan funktiota lnx/e^x. Väite on tosi, jos se on aina <1. Sen derivaatta on (1/x-lnx)/e^x. Nähdään, että funktio on ensin (kun x>0) kasvava, sitten saavuttaa maksimin kohdassa lnx=1/x ja sitten on laskeva. Nähdään että maksimikohta on välillä 1<x<e (likiarvo x=1,763). Ja nähdään, että maksimikohdassa tarkasteltava funktio <1.
Ketjusta on poistettu 1 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Kuka tekee näitä aloituksia
jotka aina ovat tällaisia.... Nämä on jonkun saman ihmisen käsialaa, joka paukuttaa tänne loputtomasti ketjuja, joissa454684Persujen kannatusromahduksen syynä bensan ja kaljan hinnan nostot
Marinin aikaan bensalitra 1,3e ja laatikon Sandelsia sai Lidlistaä 22 eurolla. Nyt hinnat ovat nousseet noin 50 prosent2543534Juhana Vartiainen(ex-sd): Köyhien pitää tehdä jotain elämälleen säilyttääkseen tukensa
Juhana Vartiainen ehdottaa Suomeen ”Tanskan mallia”, jossa sosiaaliturvaa saadakseen pitäisi hakea ensisijaisesti etuuks2693350Miksi tunnustukselliset muslimit saapuvat länteen?
Onko koskaan kysytty, että miksi islamilaisesta maailmasta tuleva tunnustuksellinen muslimi tarvitsisi turvapaikkaa väär2842583Oot mahtava tyyppi
En tiedä luetko palstaa. Koitan siitä huolimatta. Oot mun mielestä tosi erityinen tyyppi. Nopeesti taisin ihastua. Jot352404En ymmärrä näitä SDP:n ja muun vasemmiston kannattajia
Eivätkö ihmiset tiedä, että Suomen ongelmat johtuvat vasemmistolaisesta yhteiskuntamallista? Suomessa on ollut vasemmis1431799Miksi vihereät ja vasemmisto haluavat tuhota tämän maan?
He halusivat, että kannabis tulisi lailliseksi? - eikö kylliksi nuoria tuhota jo nyt huumeilla? - kannabis tuhosi minun341737Rydmanin nousu sote-ministeriksi on kauttaaltaan irvokas
Mutta samalla se oli ainut todennäköinen lopputulema. Se myös alleviivaa sitä, mistä tällä hallituksella ja aivan erityi2581695Sofia servasi Pikku-Villen suvereenisti
– Ihanko tosissaan tuleva sosiaali- ja terveysministeri hyökkää oppositiopuolueen puheenjohtajaa vastaan siksi, että täm221366- 1201155