eksponentti- ja logaritmifunktio

Anonyymi

Hei.

Miten perustelette, että käyrien y=ln(x) ja y=e^x kuvaajat eivät leikkaa? Mulla oli tää joskus koekysymyksenä, ja kokeessa ei ollut käytössä mitään graafisia laskimia/muita, että olisin kuvasta voinut katsoa.

Oon yrittänyt esim. tutkia funktiota f(x)= ln(x)-e^x derivaatalla ja muuta, mutta en osaa ratkaista tuommosia yhtälöitä.

Tietty kokeilemalla löytyy esim. f'(0,5675)=0,0017373..., eli jos arvioin että se olisi derivaatan nollakohta, f(0,5675)=2,3303...>0 ja tutkimalla derivaatan merkkiä päättelen, että se on likimain pienin arvo ja siks ei olisi nollakohtia eli ratkaisuja yhtälölle.
Se ei kuitenkaan varmaan ole kovin hyvä perustelu, koska en voi tietää, pomppaako jossain kohdassa funktion kuvaaja nopeasti x-akselin alapuolella.

Miten siis perustelisitte?

8

153

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Ensiksi ln x on määritelty vain kun x>0. Lisäksi jos 0<x<1, on ln x<0 ja e^x>0. Siten mahdolliset leikkaiskohdat saadaan puolitasossa x>=1. Mutta ln x kasvaa nopeudella 1/x<1 ja e^x nopeudella e^x>1 kun x>1. Ainoa leikkauspiste voisi olla siis x=1. Mutta ln 1=0 ja e^1>0, joten leikkauspisteitä ei ole.

    • Anonyymi

      Eiköhän tuossa riitä, että perustelee, miksi e^x > x ja ln x < x.

    • Funktio e^x on määritelty,jatkuva ja derivoituva kaikilla arvoilla - inf < x < inf.
      Samoin funktio e^x - x. Kun x < 0 on e^x > 0 ja - x > 0 joten e^x - x >0 ja siis e^x > x.
      Kun x = 0 on e^x - x = 1 > 0.
      d/dx(e^x - x) = e^x - 1 > 0 kun x > 0. e^x - x on siis kasvava funktio ja e^x - x > 0 kun x> 0.

      Nähtiin, että kaikilla arvoilla x on e^x > x.

      ln(x) on määritelty ja jatkuva kun x > 0. Se saa kaikki arvot - inf < ln(x) < inf tuolla alueella x > 0.

      Edellä todistetusta seuraa, että e^(ln(x)) > ln(x) kun x > 0. Mutta e^(ln(x)) = x joten siis x > ln(x) kun x > 0.

      On siis e^x > x > ln(x) kun x > 0. Kuvaajat eivät voi leikata.

      • Anonyymi

        sen verran kiinnostaa, että kuka on Ohman itse?


      • Anonyymi
        Anonyymi kirjoitti:

        sen verran kiinnostaa, että kuka on Ohman itse?

        jee, jee, jees,... nyt tuli todella hyvä kysymys... kuka on Ohman, kuka on martta00 (tai ilman nollia) , kuka on aeija, kuka on KL... hmm... kukin, no mitäpä se oikeesti meille kuuluu


      • Pieni lisäkommentti:

        Koska d/dx ln(x) = 1/x > 0 on myös ln( ) kasvava funktio. Koska x > ln(x) on siis

        ln(x) > ln(ln(x)) > ln(ln(ln(x))) >...jne.

        Vastaavasti , koska e^x > x, niin e^(e^x)) > e^x, e^(e^(e^x)) > e^(e^x)) jne.

        Ohman = Ohman3


    • Anonyymi

      Seitenpuol kasiviis? Tä?

    • Anonyymi

      Otetaan vielä yksi tapa: tarkastellaan funktiota lnx/e^x. Väite on tosi, jos se on aina <1. Sen derivaatta on (1/x-lnx)/e^x. Nähdään, että funktio on ensin (kun x>0) kasvava, sitten saavuttaa maksimin kohdassa lnx=1/x ja sitten on laskeva. Nähdään että maksimikohta on välillä 1<x<e (likiarvo x=1,763). Ja nähdään, että maksimikohdassa tarkasteltava funktio <1.

    Ketjusta on poistettu 1 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Ja taas ammuttu kokkolassa

      Kokkolaisilta pitäisi kerätä pois kaikki ampumaset, keittiöveitset ja kaikki mikä vähänkään paukku ja on terävä.
      Kokkola
      52
      5300
    2. Mitä siellä ABC on tapahtunut

      Tavallista isompi operaatio näkyy olevan kyseessä.
      Alajärvi
      81
      3920
    3. Helena Koivu on äiti

      Mitä hyötyä on Mikko Koivulla kohdella LASTENSA äitiä huonosti . Vie lapset tutuista ympyröistä pois . Lasten kodista.
      Kotimaiset julkkisjuorut
      325
      2305
    4. Milli-helenalla ongelmia

      Suomen virkavallan kanssa. Eipä ole ihme kun on etsintäkuullutettu jenkkilässäkin. Vähiin käy oleskelupaikat virottarell
      Kotimaiset julkkisjuorut
      267
      1932
    5. Kuinka kauan

      Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?
      Ikävä
      117
      1798
    6. Kun näen sinut

      tulen iloiseksi. Tuskin uskallan katsoa sinua, herätät minussa niin paljon tunteita. En tunne sinua hyvin, mutta jotain
      Ikävä
      56
      1382
    7. Ja taas kerran hallinto-oikeus että pieleen meni

      Hallinto-oikeus kumosi kunnanhallituksen päätöksen vuokratalojen pääomituksesta. https://sysmad10.oncloudos.com/cgi/DREQ
      Sysmä
      95
      1290
    8. Yhdelle miehelle

      Mä kaipaan sua niin paljon. Miksi sä oot tommonen pösilö?
      Ikävä
      70
      1232
    9. Löydänköhän koskaan

      Sunlaista herkkää tunteellista joka jumaloi mua. Tuskin. Siksi harmittaa että asiat meni näin 🥲
      Ikävä
      133
      1197
    10. Purra saksii taas. Hän on mielipuuhassaan.

      Nyt hän leikkaa hyvinvointialueiltamme kymmeniä miljoonia. Sotea romutetaan tylysti. Terveydenhoitoamme kurjistetaan. ht
      Maailman menoa
      295
      1172
    Aihe