sinifunktion ja yhdistetyn funktion derivaattojen todistus

Anonyymi

Hei, luin matikan kirjastani nämä todistukset, ja siellä oli tehty eräitä oletuksia, joita jäin pohtimaan.

Sini:
lim h->0 (sin(x h)-sin(x))/h=lim h->0 (sin(x)cos(h) cos(x)sin(h)-sin(x))/h
=sin(x)*lim h->0 (cos(h)-1)/h cos(x)*lim h->0 sin(h)/h
=sin(x)*lim h -> 0 (cos(h)-1)/h cos(x)*1

Seuraavaksi on oletettu, että cos(h) 1 on erisuuri kuin nolla, jotta voidaan tehdä lavennus:
=sin(x)*lim h->0 (cos(h)-1)(cos(h) 1)/(h(cos(h) 1) cos(x)
Sitten todistus jatkuu jne.

Onko tuo oletus "cos(h) 1 on erisuuri kuin nolla" mikään ongelma kuitenkaan, jos h:n määrittelee esimerkiksi avoimella välillä -pi<h<pi, jolloin lauseke cos(h) 1 ei saa arvoa nolla. Tällöin se voi lähestyä nollaa vasemmalta ja oikealta. Vai onko se joku määritelmäkysymys, että pitää olla voimassa kaikilla luvuilla h?

Yhdistetty funktio f(g(x)):
lim h->0 (f(g(x h))-f(g(x))/h

Oletetaan, että g(x h)-g(x) on erisuuri kuin nolla eli g(x h) on erisuuri kuin g(x). Tällöin voidaan tehdä lavennus:
=lim h->0 [(f(g(x h))-f(g(x)))/h*(g(x h)-g(x))/(g(x h)-g(x))]
=lim h->0 [f(g(x h))-f(g(x)))/(g(x h)-g(x))]*lim h->0[(g(x h)-g(x))/h]
Ja todistus jatkuu.

Tarkoittaako tuo oletus, että sisäfunktion g on oltava aidosti monotoninen? Vai riittääkö, että kohdan x läheisyydessä funktio ei saa samaa arvoa?

9

81

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Toisaalta tuon
      "lim h->0 (cos(h)-1)/h" voi hoitaa seuraavasti:

      Käytetään tulosta sin(h/2)= -sqrt((1-cos(h))/2), josta seuraa, että cos(h)-1=-2*sin^2(h/2).

      Nyt
      lim h->0 (cos(h)-1)/h=lim h->0 (-2sin^2(h/2))/h=-lim h->0 sin(h/2)/h * lim h->0 sin(h/2)

      Käytetään tulosta lim h->0 sin(h)/h = 1. Kun h -> 0, niin h/2 -> 0.

      -lim h->0 sin(h/2)/h * lim h->0 sin(h/2)=-1*0=0.

    • Anonyymi

      Kirjoitan näin: delta x = e(x) ja delta y = e(y).

      y = sin(x)
      Kun kasvatetaan argumenttia x määrällä e(x) niin

      y e(y) = sin(x e(x))
      e(y) = sin(x e(x)) - sin(x) = 2 sin((x e(x)-x)/2) cos((x e(x) x)/2) =
      2 sin(e(x)/2) cos(x e(x)/2)

      e(y)/e(x) = (2 sin(e(x)/2) cos(x e(x)/2) / (e(x) =
      sin(e(x)/2) / (e(x)/2) * cos(x e(x)/2)

      y' = lim(e(x) -> 0) e(y)/e(x) = lim(e(x)->0) sin(e(x)/2) / (e(x)/2) * lim(e(x)->0) cos(x e(x)/2)

      Koska lim (e(x) ->0) sin(e(x)/2) /( e(x)/2) = 1 ja cos(x) on jatkuva funktio niin

      y' = lim(e(x)->0) cos (x e(x)/2) = cos(x)

      Käy tuo läpi kynän ja paperin avulla ja kirjoita e(x)-merkintäni tilalle delta x niin eiköhän tuo selviä.

    • Anonyymi

      Jos funktiolla u = g(x) on jossain pisteessä x derivaatta u' = g'(x) ja funktiolla y = f(u) on derivaatta pisteessä u = g(x) niin yhdistetyllä funktiolla y = f(g( x)) on derivaatta tuossa pisteessä x ja se on

      dy/dx = df/du (u) * dg/dx (x)

      missä u = g(x).

      Tämä todistetaan paremmissa oppikirjoissa käyttämällä derivaatan määritelmää
      g(x h) = g'(x) h a(h) h missä a(h) -> 0 kun h -> 0. Mitään lavennuksia ei tarvita eikä monotonisuutta tai nollasta eroavuutta.

      Samanlainen todistus pätee silloinkin kun f: R^n -> R ja g: R -> R jolloin tietysti ao. suureet on otettava asianmukaisesti, siis differentiaali on lineaarinen kuvaus jne.

      En rupea tässä differentiaalilaskennan oppituntia pitämään vaan kehoitan etsimään oikean todistuksen.

      Jos käyttää Leibnizin merkintää df/dx = df/du * du/dx niin vastaava erotusosamääräyhtälö on

      delta(f) / delta(x) = delta(f) / delta(u) * delta(u) / delta(x) jonka raja-arvo otetaan kun delta(x) -> 0. Vaikeus syntyy silloin siitä että delta(u) voi oplla 0 vaikka delta(x) =/ 0.

      • Anonyymi

        Tuli tuohon kirjoitusvirhe:
        p.o. g(x h) - g(x) = g'(x) h a(h) h


      • Anonyymi
        Anonyymi kirjoitti:

        Tuli tuohon kirjoitusvirhe:
        p.o. g(x h) - g(x) = g'(x) h a(h) h

        Tulipa noita nyt!

        Tietenkin kommentissani olisi pitänyt olla että f: R->R ja g:R^n -> R jolloin f(g): R^n ->R. mTai sitten olisi pitänyt tutkia funktiota g(f):R^n -> R jos funktiot on määritelty kuten alkuperäisessä tekstissäni.Sori!



        Itse asiassa tuo ketjusääntö pätee vielä yleisemmin.

        Olkoon V R^n:n avoin joukko ja f: V -> R^m ja U olkoon R^m:n avoin joukko ja g: U -> R^p ja lisäksi f(V) olkoon U:n osajoukko. Tällöin g(f) : V -> R^p.
        Jos f on differentioituva V:n pisteessä a ja g on differentioitua pisteessä f(a) niin g(f) on differentioituva pisteessä a ja

        d(g(f)) (a) = d(g) (f(a)) * d(f) (a)
        missä * on lineaaristen kuvausten tulo tai koordinaattiesityksessä niitä esittävien matriisien tulo.

        Ja tuo differentiaali on siis lineaarinen kuvaus.

        Olkoon b = f(a) ja y = f(x) kun x kuuluu joukkoon V. Differentioituvuus tarkoittaa sitä, että

        f(x) = f(a) d(f) (a) (x - a) e1(x) l x-al (e1(x) -> 0 kun x -> a)
        g(y) = g(b) d(g) (b) (y-b) e2(y) l y-b l (e2(x) -> 0 kun y -> b)

        d(f) (a) ja d(g)(b) ovat lineaarisia kuvauksia ja nuo vektoreiden normit otetaan tietenkin a.o. avaruuksien normeina vaikka käytin samm "itseisarvomerkintää".

        Lähti nyt juttu vähän lapasesta aloittajan kysymykseen nähden mutta jäivät nuo kirjoitusvirheet harmittamaan. (Löytyneeköhän niitä tästäkin???)

        Joka tapauksessa: tuo kunnollinen asian todistus saadaan aikaan tuolla differentiaalin määritelmällä ilman lavennuksia, motonisuuksia yms. Alkuperäisen kommenttini viimeisessä lauseessa mainitsin, että syntyy vaikeuksia jos käytetään tuota Leibnizin merkintää.


    • "Tarkoittaako tuo oletus, että sisäfunktion g on oltava aidosti monotoninen? Vai riittääkö, että kohdan x läheisyydessä funktio ei saa samaa arvoa?"

      Jälkimmäinen. Esim g(x) = x^2 ei ole aidosti monotoninen, mutta g(x h) != g(x), kun h>0 on tarpeeksi pieni.

      Todistuksen viimeistelemiseksi täytyy tutkia myös tapaus, jossa tätä oletusta ei voida tehdä eli on jono x_i, joka konvergoi x:ään ja g(x_i) = g(x) kaikilla i. Mutta tällöin

      f(g(x_i)) - f(g(x)) = f(g(x)) - f(g(x)) = 0 kaikilla i

      joten

      lim_{h->0} [ ( f(g(x h)) - f(g(x)) / h ] = 0

      sillä raja-arvon oletetaan olevan olemassa (f:n derivoituvuus) ja meillä on yksi jono (g(x_i)), jolle se on nolla, joten raja-arvon täytyy olla nolla.

      Vastaavasti g'(x) = 0, joten haluttu yhtälö on voimassa.

      • Tai unohda tuo x^2 esimerkki sehän ei toimikaan, sillä mehän halutaan, että h saa olla kummalla puolella vaan. Joo taitaa siihen sitten lokaali aito monotoonisuus seurata tuosta oletuksesta.


      • minkkilaukku kirjoitti:

        Tai unohda tuo x^2 esimerkki sehän ei toimikaan, sillä mehän halutaan, että h saa olla kummalla puolella vaan. Joo taitaa siihen sitten lokaali aito monotoonisuus seurata tuosta oletuksesta.

        Joo, jatkuvuus pakottaa monotoonisuuden: jos g(y) > g(x) < g(z), niin joko g(y) = g(z) tai sitten kumpi niistä onkaan suurempi, niin väliarvolauseen nojalla sieltä välistä löytyy yhtäsuuri kuin se toinen.


      • Anonyymi
        minkkilaukku kirjoitti:

        Joo, jatkuvuus pakottaa monotoonisuuden: jos g(y) > g(x) < g(z), niin joko g(y) = g(z) tai sitten kumpi niistä onkaan suurempi, niin väliarvolauseen nojalla sieltä välistä löytyy yhtäsuuri kuin se toinen.

        Eipä näkynyt minkkilaukku mitään ymmärtäneen kommentistani /10:23.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Voitaisko olla kavereita?

      Haluaisin aloittaa puhtaalta pöydältä sinun kanssasi, tabula rasa. Minä lopetan sinun perääsi haikailun, ja sitten sinäk
      Tunteet
      27
      4665
    2. Deodoranttiteollisuus

      Annan ilmaisen vinkin. Kyseinen teollisuus voisi alkaa valmistaa kuolleen ruumiin hajua. Olisi varma hittituote, ainakin
      Jämsä
      13
      3008
    3. Rukoilimme Länsimuurilla 2000 vuoden jälkeen, Jumalamme oli antanut meille kaiken takaisin

      Western Wall, In our Hands. 55th Para. https://www.youtube.com/watch?v=u4BJAppyCSo https://en.wikipedia.org/wiki/55th_
      Ateismi
      14
      1249
    4. Kerro kaivattusi

      Jokin tapa/piirre mikä sinua viehättää ja mistä hän voisi myös tunnistaa itsensä.
      Ikävä
      45
      1045
    5. Oulaisten kaupunki tuomittiin maksamaan korvauksia

      Mikäs juttu tämä on? Kaupunki syyllistänyt useamman vuoden koneyrittäjiä ja nyt tuomittu.
      Oulainen
      23
      1014
    6. PURRA TULEE !

      Valtiovarainministeri Riika Purra, joka on lisäksi varapääministeri ja perussuomalaisten puheenjohtaja, tulee puoluesiht
      Haapavesi
      120
      834
    7. Onko MOT tulossa Ähtärin valtuuston kokoukseen?

      Esityslistan mukaan Ähtärin kaupunginvaltuuston valtapuolueet aikovat maanantaina estää tilintarkastajan laatiman raport
      Ähtäri
      39
      817
    8. Minkä vuoksi

      Kaivattusi tuntuu niin rakkaalta ❤️
      Ikävä
      37
      784
    9. Vain 30-40v mies on kuuma

      Muut on papparaisia. Näin se vaan menee. Miehelläkin on se paras ikä.
      Ikävä
      110
      768
    10. Mikään ei ole ikuista

      Hyvää huomenta. ☕ Susi ulvoo yksin ja tyhjyys kutsuu luokseen.⚜️❄️❤️🥱
      Ikävä
      137
      697
    Aihe