sinifunktion ja yhdistetyn funktion derivaattojen todistus

Anonyymi

Hei, luin matikan kirjastani nämä todistukset, ja siellä oli tehty eräitä oletuksia, joita jäin pohtimaan.

Sini:
lim h->0 (sin(x h)-sin(x))/h=lim h->0 (sin(x)cos(h) cos(x)sin(h)-sin(x))/h
=sin(x)*lim h->0 (cos(h)-1)/h cos(x)*lim h->0 sin(h)/h
=sin(x)*lim h -> 0 (cos(h)-1)/h cos(x)*1

Seuraavaksi on oletettu, että cos(h) 1 on erisuuri kuin nolla, jotta voidaan tehdä lavennus:
=sin(x)*lim h->0 (cos(h)-1)(cos(h) 1)/(h(cos(h) 1) cos(x)
Sitten todistus jatkuu jne.

Onko tuo oletus "cos(h) 1 on erisuuri kuin nolla" mikään ongelma kuitenkaan, jos h:n määrittelee esimerkiksi avoimella välillä -pi<h<pi, jolloin lauseke cos(h) 1 ei saa arvoa nolla. Tällöin se voi lähestyä nollaa vasemmalta ja oikealta. Vai onko se joku määritelmäkysymys, että pitää olla voimassa kaikilla luvuilla h?

Yhdistetty funktio f(g(x)):
lim h->0 (f(g(x h))-f(g(x))/h

Oletetaan, että g(x h)-g(x) on erisuuri kuin nolla eli g(x h) on erisuuri kuin g(x). Tällöin voidaan tehdä lavennus:
=lim h->0 [(f(g(x h))-f(g(x)))/h*(g(x h)-g(x))/(g(x h)-g(x))]
=lim h->0 [f(g(x h))-f(g(x)))/(g(x h)-g(x))]*lim h->0[(g(x h)-g(x))/h]
Ja todistus jatkuu.

Tarkoittaako tuo oletus, että sisäfunktion g on oltava aidosti monotoninen? Vai riittääkö, että kohdan x läheisyydessä funktio ei saa samaa arvoa?

9

97

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Toisaalta tuon
      "lim h->0 (cos(h)-1)/h" voi hoitaa seuraavasti:

      Käytetään tulosta sin(h/2)= -sqrt((1-cos(h))/2), josta seuraa, että cos(h)-1=-2*sin^2(h/2).

      Nyt
      lim h->0 (cos(h)-1)/h=lim h->0 (-2sin^2(h/2))/h=-lim h->0 sin(h/2)/h * lim h->0 sin(h/2)

      Käytetään tulosta lim h->0 sin(h)/h = 1. Kun h -> 0, niin h/2 -> 0.

      -lim h->0 sin(h/2)/h * lim h->0 sin(h/2)=-1*0=0.

    • Anonyymi

      Kirjoitan näin: delta x = e(x) ja delta y = e(y).

      y = sin(x)
      Kun kasvatetaan argumenttia x määrällä e(x) niin

      y e(y) = sin(x e(x))
      e(y) = sin(x e(x)) - sin(x) = 2 sin((x e(x)-x)/2) cos((x e(x) x)/2) =
      2 sin(e(x)/2) cos(x e(x)/2)

      e(y)/e(x) = (2 sin(e(x)/2) cos(x e(x)/2) / (e(x) =
      sin(e(x)/2) / (e(x)/2) * cos(x e(x)/2)

      y' = lim(e(x) -> 0) e(y)/e(x) = lim(e(x)->0) sin(e(x)/2) / (e(x)/2) * lim(e(x)->0) cos(x e(x)/2)

      Koska lim (e(x) ->0) sin(e(x)/2) /( e(x)/2) = 1 ja cos(x) on jatkuva funktio niin

      y' = lim(e(x)->0) cos (x e(x)/2) = cos(x)

      Käy tuo läpi kynän ja paperin avulla ja kirjoita e(x)-merkintäni tilalle delta x niin eiköhän tuo selviä.

    • Anonyymi

      Jos funktiolla u = g(x) on jossain pisteessä x derivaatta u' = g'(x) ja funktiolla y = f(u) on derivaatta pisteessä u = g(x) niin yhdistetyllä funktiolla y = f(g( x)) on derivaatta tuossa pisteessä x ja se on

      dy/dx = df/du (u) * dg/dx (x)

      missä u = g(x).

      Tämä todistetaan paremmissa oppikirjoissa käyttämällä derivaatan määritelmää
      g(x h) = g'(x) h a(h) h missä a(h) -> 0 kun h -> 0. Mitään lavennuksia ei tarvita eikä monotonisuutta tai nollasta eroavuutta.

      Samanlainen todistus pätee silloinkin kun f: R^n -> R ja g: R -> R jolloin tietysti ao. suureet on otettava asianmukaisesti, siis differentiaali on lineaarinen kuvaus jne.

      En rupea tässä differentiaalilaskennan oppituntia pitämään vaan kehoitan etsimään oikean todistuksen.

      Jos käyttää Leibnizin merkintää df/dx = df/du * du/dx niin vastaava erotusosamääräyhtälö on

      delta(f) / delta(x) = delta(f) / delta(u) * delta(u) / delta(x) jonka raja-arvo otetaan kun delta(x) -> 0. Vaikeus syntyy silloin siitä että delta(u) voi oplla 0 vaikka delta(x) =/ 0.

      • Anonyymi

        Tuli tuohon kirjoitusvirhe:
        p.o. g(x h) - g(x) = g'(x) h a(h) h


      • Anonyymi
        Anonyymi kirjoitti:

        Tuli tuohon kirjoitusvirhe:
        p.o. g(x h) - g(x) = g'(x) h a(h) h

        Tulipa noita nyt!

        Tietenkin kommentissani olisi pitänyt olla että f: R->R ja g:R^n -> R jolloin f(g): R^n ->R. mTai sitten olisi pitänyt tutkia funktiota g(f):R^n -> R jos funktiot on määritelty kuten alkuperäisessä tekstissäni.Sori!



        Itse asiassa tuo ketjusääntö pätee vielä yleisemmin.

        Olkoon V R^n:n avoin joukko ja f: V -> R^m ja U olkoon R^m:n avoin joukko ja g: U -> R^p ja lisäksi f(V) olkoon U:n osajoukko. Tällöin g(f) : V -> R^p.
        Jos f on differentioituva V:n pisteessä a ja g on differentioitua pisteessä f(a) niin g(f) on differentioituva pisteessä a ja

        d(g(f)) (a) = d(g) (f(a)) * d(f) (a)
        missä * on lineaaristen kuvausten tulo tai koordinaattiesityksessä niitä esittävien matriisien tulo.

        Ja tuo differentiaali on siis lineaarinen kuvaus.

        Olkoon b = f(a) ja y = f(x) kun x kuuluu joukkoon V. Differentioituvuus tarkoittaa sitä, että

        f(x) = f(a) d(f) (a) (x - a) e1(x) l x-al (e1(x) -> 0 kun x -> a)
        g(y) = g(b) d(g) (b) (y-b) e2(y) l y-b l (e2(x) -> 0 kun y -> b)

        d(f) (a) ja d(g)(b) ovat lineaarisia kuvauksia ja nuo vektoreiden normit otetaan tietenkin a.o. avaruuksien normeina vaikka käytin samm "itseisarvomerkintää".

        Lähti nyt juttu vähän lapasesta aloittajan kysymykseen nähden mutta jäivät nuo kirjoitusvirheet harmittamaan. (Löytyneeköhän niitä tästäkin???)

        Joka tapauksessa: tuo kunnollinen asian todistus saadaan aikaan tuolla differentiaalin määritelmällä ilman lavennuksia, motonisuuksia yms. Alkuperäisen kommenttini viimeisessä lauseessa mainitsin, että syntyy vaikeuksia jos käytetään tuota Leibnizin merkintää.


    • "Tarkoittaako tuo oletus, että sisäfunktion g on oltava aidosti monotoninen? Vai riittääkö, että kohdan x läheisyydessä funktio ei saa samaa arvoa?"

      Jälkimmäinen. Esim g(x) = x^2 ei ole aidosti monotoninen, mutta g(x h) != g(x), kun h>0 on tarpeeksi pieni.

      Todistuksen viimeistelemiseksi täytyy tutkia myös tapaus, jossa tätä oletusta ei voida tehdä eli on jono x_i, joka konvergoi x:ään ja g(x_i) = g(x) kaikilla i. Mutta tällöin

      f(g(x_i)) - f(g(x)) = f(g(x)) - f(g(x)) = 0 kaikilla i

      joten

      lim_{h->0} [ ( f(g(x h)) - f(g(x)) / h ] = 0

      sillä raja-arvon oletetaan olevan olemassa (f:n derivoituvuus) ja meillä on yksi jono (g(x_i)), jolle se on nolla, joten raja-arvon täytyy olla nolla.

      Vastaavasti g'(x) = 0, joten haluttu yhtälö on voimassa.

      • Tai unohda tuo x^2 esimerkki sehän ei toimikaan, sillä mehän halutaan, että h saa olla kummalla puolella vaan. Joo taitaa siihen sitten lokaali aito monotoonisuus seurata tuosta oletuksesta.


      • minkkilaukku kirjoitti:

        Tai unohda tuo x^2 esimerkki sehän ei toimikaan, sillä mehän halutaan, että h saa olla kummalla puolella vaan. Joo taitaa siihen sitten lokaali aito monotoonisuus seurata tuosta oletuksesta.

        Joo, jatkuvuus pakottaa monotoonisuuden: jos g(y) > g(x) < g(z), niin joko g(y) = g(z) tai sitten kumpi niistä onkaan suurempi, niin väliarvolauseen nojalla sieltä välistä löytyy yhtäsuuri kuin se toinen.


      • Anonyymi
        minkkilaukku kirjoitti:

        Joo, jatkuvuus pakottaa monotoonisuuden: jos g(y) > g(x) < g(z), niin joko g(y) = g(z) tai sitten kumpi niistä onkaan suurempi, niin väliarvolauseen nojalla sieltä välistä löytyy yhtäsuuri kuin se toinen.

        Eipä näkynyt minkkilaukku mitään ymmärtäneen kommentistani /10:23.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Laitetaas nyt kirjaimet tänne

      kuka kaipaa ja ketä ?
      Ikävä
      151
      10944
    2. Pieni häivähdys sinusta

      Olet niin totinen
      Ikävä
      52
      5230
    3. Taas ryssittiin oikein kunnolla

      r….ä hyökkäsi Viroon sikaili taas ajattelematta yhtään mitään https://www.is.fi/ulkomaat/art-2000011347289.html
      NATO
      45
      2433
    4. Missä olet ollut tänään kaivattuni?

      Ikävä sai yliotteen ❤️ En nähnyt sua tänään söpö mies
      Ikävä
      30
      2133
    5. Vanha Suola janottaa Iivarilla

      Vanha suola janottaa Siikalatvan kunnanjohtaja Pekka Iivaria. Mies kiertää Kemijärven kyläjuhlia ja kulttuuritapahtumia
      Kemijärvi
      13
      1701
    6. Valtimon Haapajärvellä paatti mäni nurin

      Ikävä onnettomuus Haapajärvellä. Vene hörpppi vettä matkalla saaren. Veneessä ol 5 henkilöä, kolme uiskenteli rantaan,
      Nurmes
      42
      1544
    7. Tiedän kuka sinä noista olet

      Lucky for you, olen rakastunut sinuun joten en reagoi negatiivisesti. Voit kertoa kavereillesi että kyl vaan, rakkautta
      Ikävä
      30
      1241
    8. Känniläiset veneessä?

      Siinä taas päästiin näyttämään miten tyhmiä känniläiset on. Heh heh "Kaikki osalliset ovat täysi-ikäisiä ja alkoholin v
      Nurmes
      35
      1176
    9. Daniel Nummelan linjapuhe 2025

      Kansanlähetyksen toiminnanjohtajan Daniel Nummelan linjapuhe tänään. Rehellistä analyysiä mm. evlut kirkosta ja piispo
      Luterilaisuus
      92
      935
    10. TÄSTÄ TAITAA TULLA SUOMEN HISTORIAN SUURIN USKONNONVAPAUDEN OIKEUDENKÄYNTI.

      Sinun täytyy hyväksyä se että jos sinä vetoat uskonnonvapauteen, silloin sinun tulee antaa myös muille vastaava vapaus o
      Hindulaisuus
      317
      892
    Aihe