Integaali (x*ln(x)) potenssiin n nollasta ykköseen

Yritän laskea, Leibnizin metodiksiko sitä nyt kutsutaan kun lisätään uusi parametri, jonka jollain arvolla integraali saadaan ja derivoidaan (ja siirretään integraalimerkin alle)(?), tuollaista. Siis minä laitan t:n ln(x):ään eli ln(tx). Täällä on laskuni: https://www.desmos.com/calculator/bh4rvon3xa . Olen jo arvannut kaavan integraalin arvolle

n! / (n 1)^(n 1),

mutta tuossa laskemisessa on yksi kohta jota en saa menemään: Kun lasketaan I_n(t):tä, niin sinne tulee ylimääräinen x:ä. Desmoksessa g on I'(t) ja siinä alla on se muoto, johon pääsin. Miten tuosta? Pitäisikö antaa x:n potenssin olla m ja johtaa yleisempi kaava. Kokeilin osittaisintegraatiota, mutta sekään ei mielestäni toiminut.

11

124

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Siis integraalista tulee mukavasti n ulos, joka johtaa rekursiivisesti n!:ään kun saataisiin jäämään alempi I_n. Mutta mistäs 1/(n 1)^(n 1) saadaan? Merkitsen siis integraalia I_n(t). Derivaatalle saadaan

      I_n'(t) = n/t integraali nollasta ykköseen x (x*ln(tx))^(n-1) dx

      mutta tuosta en osaa jatkaa. Mitenkäs I_n(t) saadaan derivaatasta, ei oikein uskalla integroidakaan (vai mistä mihin (ykköseen oletettavasti) pitäisi??)

    • Anonyymi

      En nyt ehkä ihan saa esityksestäsi selvää mitä varsinaisesti tarkoitat. Kuitenkin, kts. Wikipedia: Leibnitz integral rule. Onko tuo Feynmanin temppu etsimäsi?

      • Anonyymi

        Sori. P.o. : Leibniz


      • Anonyymi
        Anonyymi kirjoitti:

        Sori. P.o. : Leibniz

        Vielä lisäys: Mihin tässä osittaisintegrointia kummempaa tarvitaan? Jo sillä on helppo osoittaa että vähän yleisemmin:

        Int(0 <= x <= 1) (x^m (ln(x))^n) dx = (- 1)^n * n! / (m 1)^(n 1)


      • Anonyymi kirjoitti:

        Vielä lisäys: Mihin tässä osittaisintegrointia kummempaa tarvitaan? Jo sillä on helppo osoittaa että vähän yleisemmin:

        Int(0 <= x <= 1) (x^m (ln(x))^n) dx = (- 1)^n * n! / (m 1)^(n 1)

        Joo, Feynmanin tempusta oli kyse. Joo, nyt näänkin, että kun ottaakin x^m * ln(x)^n, niin on helpompi. Eka tapaus n=0 tulee suoraan integroimalla ja sitten induktiivisesti joko osittaisintegroinnilla, tai Leibnizilä:

        I_n,m ' (t) = n/t (n-1)! / ((n 1)^m t^(n-1))

        eli sinne tulee t^(-n), joka integroidaan -1/(n 1) t^(-n 1):ksi eli sitä kauttahan se (n 1)^(m 1) tulee.
        Tuota toisen parametrin m ottamista vähän ounastelinkin, mutta en jotenkin vienyt ajatusta loppuun :D.


      • Anonyymi
        minkkilaukku kirjoitti:

        Joo, Feynmanin tempusta oli kyse. Joo, nyt näänkin, että kun ottaakin x^m * ln(x)^n, niin on helpompi. Eka tapaus n=0 tulee suoraan integroimalla ja sitten induktiivisesti joko osittaisintegroinnilla, tai Leibnizilä:

        I_n,m ' (t) = n/t (n-1)! / ((n 1)^m t^(n-1))

        eli sinne tulee t^(-n), joka integroidaan -1/(n 1) t^(-n 1):ksi eli sitä kauttahan se (n 1)^(m 1) tulee.
        Tuota toisen parametrin m ottamista vähän ounastelinkin, mutta en jotenkin vienyt ajatusta loppuun :D.

        Sekoiletko? Katsohan tarkemmin esittämääni tulosta.Siinä esiintyy (m 1)^(n 1) ja lisäksi (- 1)^n.


      • Anonyymi
        Anonyymi kirjoitti:

        Sekoiletko? Katsohan tarkemmin esittämääni tulosta.Siinä esiintyy (m 1)^(n 1) ja lisäksi (- 1)^n.

        Joo, miinus merkki unohtu mainita kaavoissa, mutta -1/(n 1) t^(-n 1):ksi :ssahan se on, joten -1 tulee joka kerta tekijäksi, joten yhteensä juuri (-1)^n. Huomasin kyllä kun olin jo viestin laittanut :D.


      • Anonyymi
        Anonyymi kirjoitti:

        Joo, miinus merkki unohtu mainita kaavoissa, mutta -1/(n 1) t^(-n 1):ksi :ssahan se on, joten -1 tulee joka kerta tekijäksi, joten yhteensä juuri (-1)^n. Huomasin kyllä kun olin jo viestin laittanut :D.

        Ei ole tarkoitukseni jankuttaa pikku asiasta mutta kiinnitin tuon - merkin lisäksi huomiotani siihen että viestissäsi / eilen 15:20 olivat m ja n vaihtaneet paikkaa ja lauseke oli virheellinen. Sitten kun n = m tuo ei enää näy.
        Sinulla luki " ...kauttahan se (n 1)^(m 1) tulee".


      • Anonyymi kirjoitti:

        Ei ole tarkoitukseni jankuttaa pikku asiasta mutta kiinnitin tuon - merkin lisäksi huomiotani siihen että viestissäsi / eilen 15:20 olivat m ja n vaihtaneet paikkaa ja lauseke oli virheellinen. Sitten kun n = m tuo ei enää näy.
        Sinulla luki " ...kauttahan se (n 1)^(m 1) tulee".

        Totta, ei se taida mennäkään läpi. Miten tästä jatkettaisiin:

        I_m,n'(t)
        = int_0^1 nx^m * ln(tx)^(n-1) * x /(tx) * x dx
        = n/t int_0^1 x^(m 1) ln(tx)^(n-1)

        Nyt t:n mukana olo tuo kuitenkin vaikeuksia. Mikä pitää ottaa induktio-oletukseksi (tai siis eihän sitä saa tuosta vaan ottaa vaan sen pitää olla totta). Ehkä ilman derivointia olisi helpompi. Osittaisintegroinnissa u = x^m ja v' = ln(x)^n (?) Mutta näin tämän tehtävän interointi merkin alla derivoinnin sovellutuksena, niin pitäisihän se jotenkin sitenkin mennä.


      • Anonyymi
        minkkilaukku kirjoitti:

        Totta, ei se taida mennäkään läpi. Miten tästä jatkettaisiin:

        I_m,n'(t)
        = int_0^1 nx^m * ln(tx)^(n-1) * x /(tx) * x dx
        = n/t int_0^1 x^(m 1) ln(tx)^(n-1)

        Nyt t:n mukana olo tuo kuitenkin vaikeuksia. Mikä pitää ottaa induktio-oletukseksi (tai siis eihän sitä saa tuosta vaan ottaa vaan sen pitää olla totta). Ehkä ilman derivointia olisi helpompi. Osittaisintegroinnissa u = x^m ja v' = ln(x)^n (?) Mutta näin tämän tehtävän interointi merkin alla derivoinnin sovellutuksena, niin pitäisihän se jotenkin sitenkin mennä.

        Kaava on siis

        Int(0,1) (x^m * (log(x))^n) dx = (- 1)^n * n!/(m 1)^(n 1)
        Kirjoitin nyt matematiikassa yleiseen tapaan log tuon ln-merkinnän sijasta. Harvemmin muita logaritmeja teoreettisissa käsittelyissä käytetään.

        Int(0,1) (x^m (log(x))dx = Int(0,1) (log(x) d(x^(m 1) / (m 1)) = Sij(0,1) (log(x) x^(m 1)/(m 1)
        - Int(0,1) (1/(m 1) * x^m)dx = - 1/(m 1)^2
        Kaava pitää siis paikkansa kun n = 1.

        Oletetaan nyt että kaava pätee arvoilla n ja m.

        Int(0,1) (x^m (log(x))^(n 1)) dx = Int(0,1) ((log(x))^(n 1) d(x^(m 1)/(m 1) =

        Sij(0,1) ((log(x))^(n 1) * x^(m 1)/(m 1) - Int(0,1) (x^(m 1)/(m 1) * (n 1) (log(x))^n* 1/x) dx=
        -(n 1)/(m 1)* Int(0,1) (x^m (log(x))^n)dx =
        -(n 1)/(m 1) * (- 1)^n * n!/((m 1)^(n 1) = (- 1) (n 1) * (n 1)!/(m 1)^(n 2)

        MOT


      • Anonyymi
        Anonyymi kirjoitti:

        Kaava on siis

        Int(0,1) (x^m * (log(x))^n) dx = (- 1)^n * n!/(m 1)^(n 1)
        Kirjoitin nyt matematiikassa yleiseen tapaan log tuon ln-merkinnän sijasta. Harvemmin muita logaritmeja teoreettisissa käsittelyissä käytetään.

        Int(0,1) (x^m (log(x))dx = Int(0,1) (log(x) d(x^(m 1) / (m 1)) = Sij(0,1) (log(x) x^(m 1)/(m 1)
        - Int(0,1) (1/(m 1) * x^m)dx = - 1/(m 1)^2
        Kaava pitää siis paikkansa kun n = 1.

        Oletetaan nyt että kaava pätee arvoilla n ja m.

        Int(0,1) (x^m (log(x))^(n 1)) dx = Int(0,1) ((log(x))^(n 1) d(x^(m 1)/(m 1) =

        Sij(0,1) ((log(x))^(n 1) * x^(m 1)/(m 1) - Int(0,1) (x^(m 1)/(m 1) * (n 1) (log(x))^n* 1/x) dx=
        -(n 1)/(m 1)* Int(0,1) (x^m (log(x))^n)dx =
        -(n 1)/(m 1) * (- 1)^n * n!/((m 1)^(n 1) = (- 1) (n 1) * (n 1)!/(m 1)^(n 2)

        MOT

        Johan tuohon kerkesi ainakin yksi kirjoitusvirhe. viimeisen yhtäläisyysmerkin jälkeen tulee olla
        (- 1)^(n 1) * (n 1)!/ (m 1)^(n 2)
        Kenkkuja kirjoitettavia tämmöiset!


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Takaisin ylös

    Luetuimmat keskustelut

    1. On ikävä sua

      Koko ajan
      Ikävä
      29
      2404
    2. Vielä kerran.

      Muista että olet ihan itse aloittanut tämän. En ei silti sinua syyllistä tai muutenkaan koskaan tule mainitsemaan tästä
      Ikävä
      370
      2012
    3. M nainen tiedätkö mitä

      Rovaniemellä sataa nyt lunta, just nyt kun lähden pohjoiseen. Älä ota mitään paineita tästä mun ihastumisesta sinuun, ti
      Ikävä
      18
      1504
    4. Pelkään suunnattomasti

      Että olet toiseen ihastunut. Se on lähes sietämätön ajatus koska koen että meidän tilanne on auki, selvittämättä. Eikä k
      Ikävä
      53
      917
    5. Parempi suorituskyky Urheiluharrastajien suosimasta lisäravinteesta hyötyisivät todennäköisesti kaik

      Parempi suorituskyky Urheiluharrastajien suosimasta lisäravinteesta hyötyisivät todennäköisesti kaikki muutkin. Se on ed
      Maailman menoa
      10
      881
    6. Mies, etko ole miettinyt

      että voit menettää yhteytemme ja minut lopullisesti, jos et tee mitään?
      Ikävä
      52
      783
    7. Olet ihan sairaan

      Kylmä mua kohtaan.
      Ikävä
      54
      731
    8. Shellin omistajan vaihdos.

      Uutta tuulta purjeisiin.Uuden yrittäjän toimesta .
      Kuhmo
      18
      710
    9. Mitä kuuluu

      Elämänirakkaus, sielunkumppani, peilikuvani 😘
      Ikävä
      25
      699
    10. Olette kyllästyneet

      Mutta hyvää huomenta kuitenkin. Mukava päivä tämäkin. 😊⚜️🦌🎄✨❤️
      Ikävä
      135
      623
    Aihe