Integaali (x*ln(x)) potenssiin n nollasta ykköseen

Yritän laskea, Leibnizin metodiksiko sitä nyt kutsutaan kun lisätään uusi parametri, jonka jollain arvolla integraali saadaan ja derivoidaan (ja siirretään integraalimerkin alle)(?), tuollaista. Siis minä laitan t:n ln(x):ään eli ln(tx). Täällä on laskuni: https://www.desmos.com/calculator/bh4rvon3xa . Olen jo arvannut kaavan integraalin arvolle

n! / (n 1)^(n 1),

mutta tuossa laskemisessa on yksi kohta jota en saa menemään: Kun lasketaan I_n(t):tä, niin sinne tulee ylimääräinen x:ä. Desmoksessa g on I'(t) ja siinä alla on se muoto, johon pääsin. Miten tuosta? Pitäisikö antaa x:n potenssin olla m ja johtaa yleisempi kaava. Kokeilin osittaisintegraatiota, mutta sekään ei mielestäni toiminut.

11

195

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Siis integraalista tulee mukavasti n ulos, joka johtaa rekursiivisesti n!:ään kun saataisiin jäämään alempi I_n. Mutta mistäs 1/(n 1)^(n 1) saadaan? Merkitsen siis integraalia I_n(t). Derivaatalle saadaan

      I_n'(t) = n/t integraali nollasta ykköseen x (x*ln(tx))^(n-1) dx

      mutta tuosta en osaa jatkaa. Mitenkäs I_n(t) saadaan derivaatasta, ei oikein uskalla integroidakaan (vai mistä mihin (ykköseen oletettavasti) pitäisi??)

    • Anonyymi

      En nyt ehkä ihan saa esityksestäsi selvää mitä varsinaisesti tarkoitat. Kuitenkin, kts. Wikipedia: Leibnitz integral rule. Onko tuo Feynmanin temppu etsimäsi?

      • Anonyymi

        Sori. P.o. : Leibniz


      • Anonyymi
        Anonyymi kirjoitti:

        Sori. P.o. : Leibniz

        Vielä lisäys: Mihin tässä osittaisintegrointia kummempaa tarvitaan? Jo sillä on helppo osoittaa että vähän yleisemmin:

        Int(0 <= x <= 1) (x^m (ln(x))^n) dx = (- 1)^n * n! / (m 1)^(n 1)


      • Anonyymi kirjoitti:

        Vielä lisäys: Mihin tässä osittaisintegrointia kummempaa tarvitaan? Jo sillä on helppo osoittaa että vähän yleisemmin:

        Int(0 <= x <= 1) (x^m (ln(x))^n) dx = (- 1)^n * n! / (m 1)^(n 1)

        Joo, Feynmanin tempusta oli kyse. Joo, nyt näänkin, että kun ottaakin x^m * ln(x)^n, niin on helpompi. Eka tapaus n=0 tulee suoraan integroimalla ja sitten induktiivisesti joko osittaisintegroinnilla, tai Leibnizilä:

        I_n,m ' (t) = n/t (n-1)! / ((n 1)^m t^(n-1))

        eli sinne tulee t^(-n), joka integroidaan -1/(n 1) t^(-n 1):ksi eli sitä kauttahan se (n 1)^(m 1) tulee.
        Tuota toisen parametrin m ottamista vähän ounastelinkin, mutta en jotenkin vienyt ajatusta loppuun :D.


      • Anonyymi
        minkkilaukku kirjoitti:

        Joo, Feynmanin tempusta oli kyse. Joo, nyt näänkin, että kun ottaakin x^m * ln(x)^n, niin on helpompi. Eka tapaus n=0 tulee suoraan integroimalla ja sitten induktiivisesti joko osittaisintegroinnilla, tai Leibnizilä:

        I_n,m ' (t) = n/t (n-1)! / ((n 1)^m t^(n-1))

        eli sinne tulee t^(-n), joka integroidaan -1/(n 1) t^(-n 1):ksi eli sitä kauttahan se (n 1)^(m 1) tulee.
        Tuota toisen parametrin m ottamista vähän ounastelinkin, mutta en jotenkin vienyt ajatusta loppuun :D.

        Sekoiletko? Katsohan tarkemmin esittämääni tulosta.Siinä esiintyy (m 1)^(n 1) ja lisäksi (- 1)^n.


      • Anonyymi
        Anonyymi kirjoitti:

        Sekoiletko? Katsohan tarkemmin esittämääni tulosta.Siinä esiintyy (m 1)^(n 1) ja lisäksi (- 1)^n.

        Joo, miinus merkki unohtu mainita kaavoissa, mutta -1/(n 1) t^(-n 1):ksi :ssahan se on, joten -1 tulee joka kerta tekijäksi, joten yhteensä juuri (-1)^n. Huomasin kyllä kun olin jo viestin laittanut :D.


      • Anonyymi
        Anonyymi kirjoitti:

        Joo, miinus merkki unohtu mainita kaavoissa, mutta -1/(n 1) t^(-n 1):ksi :ssahan se on, joten -1 tulee joka kerta tekijäksi, joten yhteensä juuri (-1)^n. Huomasin kyllä kun olin jo viestin laittanut :D.

        Ei ole tarkoitukseni jankuttaa pikku asiasta mutta kiinnitin tuon - merkin lisäksi huomiotani siihen että viestissäsi / eilen 15:20 olivat m ja n vaihtaneet paikkaa ja lauseke oli virheellinen. Sitten kun n = m tuo ei enää näy.
        Sinulla luki " ...kauttahan se (n 1)^(m 1) tulee".


      • Anonyymi kirjoitti:

        Ei ole tarkoitukseni jankuttaa pikku asiasta mutta kiinnitin tuon - merkin lisäksi huomiotani siihen että viestissäsi / eilen 15:20 olivat m ja n vaihtaneet paikkaa ja lauseke oli virheellinen. Sitten kun n = m tuo ei enää näy.
        Sinulla luki " ...kauttahan se (n 1)^(m 1) tulee".

        Totta, ei se taida mennäkään läpi. Miten tästä jatkettaisiin:

        I_m,n'(t)
        = int_0^1 nx^m * ln(tx)^(n-1) * x /(tx) * x dx
        = n/t int_0^1 x^(m 1) ln(tx)^(n-1)

        Nyt t:n mukana olo tuo kuitenkin vaikeuksia. Mikä pitää ottaa induktio-oletukseksi (tai siis eihän sitä saa tuosta vaan ottaa vaan sen pitää olla totta). Ehkä ilman derivointia olisi helpompi. Osittaisintegroinnissa u = x^m ja v' = ln(x)^n (?) Mutta näin tämän tehtävän interointi merkin alla derivoinnin sovellutuksena, niin pitäisihän se jotenkin sitenkin mennä.


      • Anonyymi
        minkkilaukku kirjoitti:

        Totta, ei se taida mennäkään läpi. Miten tästä jatkettaisiin:

        I_m,n'(t)
        = int_0^1 nx^m * ln(tx)^(n-1) * x /(tx) * x dx
        = n/t int_0^1 x^(m 1) ln(tx)^(n-1)

        Nyt t:n mukana olo tuo kuitenkin vaikeuksia. Mikä pitää ottaa induktio-oletukseksi (tai siis eihän sitä saa tuosta vaan ottaa vaan sen pitää olla totta). Ehkä ilman derivointia olisi helpompi. Osittaisintegroinnissa u = x^m ja v' = ln(x)^n (?) Mutta näin tämän tehtävän interointi merkin alla derivoinnin sovellutuksena, niin pitäisihän se jotenkin sitenkin mennä.

        Kaava on siis

        Int(0,1) (x^m * (log(x))^n) dx = (- 1)^n * n!/(m 1)^(n 1)
        Kirjoitin nyt matematiikassa yleiseen tapaan log tuon ln-merkinnän sijasta. Harvemmin muita logaritmeja teoreettisissa käsittelyissä käytetään.

        Int(0,1) (x^m (log(x))dx = Int(0,1) (log(x) d(x^(m 1) / (m 1)) = Sij(0,1) (log(x) x^(m 1)/(m 1)
        - Int(0,1) (1/(m 1) * x^m)dx = - 1/(m 1)^2
        Kaava pitää siis paikkansa kun n = 1.

        Oletetaan nyt että kaava pätee arvoilla n ja m.

        Int(0,1) (x^m (log(x))^(n 1)) dx = Int(0,1) ((log(x))^(n 1) d(x^(m 1)/(m 1) =

        Sij(0,1) ((log(x))^(n 1) * x^(m 1)/(m 1) - Int(0,1) (x^(m 1)/(m 1) * (n 1) (log(x))^n* 1/x) dx=
        -(n 1)/(m 1)* Int(0,1) (x^m (log(x))^n)dx =
        -(n 1)/(m 1) * (- 1)^n * n!/((m 1)^(n 1) = (- 1) (n 1) * (n 1)!/(m 1)^(n 2)

        MOT


      • Anonyymi
        Anonyymi kirjoitti:

        Kaava on siis

        Int(0,1) (x^m * (log(x))^n) dx = (- 1)^n * n!/(m 1)^(n 1)
        Kirjoitin nyt matematiikassa yleiseen tapaan log tuon ln-merkinnän sijasta. Harvemmin muita logaritmeja teoreettisissa käsittelyissä käytetään.

        Int(0,1) (x^m (log(x))dx = Int(0,1) (log(x) d(x^(m 1) / (m 1)) = Sij(0,1) (log(x) x^(m 1)/(m 1)
        - Int(0,1) (1/(m 1) * x^m)dx = - 1/(m 1)^2
        Kaava pitää siis paikkansa kun n = 1.

        Oletetaan nyt että kaava pätee arvoilla n ja m.

        Int(0,1) (x^m (log(x))^(n 1)) dx = Int(0,1) ((log(x))^(n 1) d(x^(m 1)/(m 1) =

        Sij(0,1) ((log(x))^(n 1) * x^(m 1)/(m 1) - Int(0,1) (x^(m 1)/(m 1) * (n 1) (log(x))^n* 1/x) dx=
        -(n 1)/(m 1)* Int(0,1) (x^m (log(x))^n)dx =
        -(n 1)/(m 1) * (- 1)^n * n!/((m 1)^(n 1) = (- 1) (n 1) * (n 1)!/(m 1)^(n 2)

        MOT

        Johan tuohon kerkesi ainakin yksi kirjoitusvirhe. viimeisen yhtäläisyysmerkin jälkeen tulee olla
        (- 1)^(n 1) * (n 1)!/ (m 1)^(n 2)
        Kenkkuja kirjoitettavia tämmöiset!


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Laitetaas nyt kirjaimet tänne

      kuka kaipaa ja ketä ?
      Ikävä
      93
      7558
    2. Pieni häivähdys sinusta

      Olet niin totinen
      Ikävä
      40
      3622
    3. Lähetä terveisesi kaipaamallesi henkilölle

      Vauva-palstalta tuttua kaipaamista uudessa ympäristössä. Kaipuu jatkukoon 💘
      Ikävä
      102
      1846
    4. Missä olet ollut tänään kaivattuni?

      Ikävä sai yliotteen ❤️ En nähnyt sua tänään söpö mies
      Ikävä
      24
      1060
    5. Taas ryssittiin oikein kunnolla

      r….ä hyökkäsi Viroon sikaili taas ajattelematta yhtään mitään https://www.is.fi/ulkomaat/art-2000011347289.html
      NATO
      32
      943
    6. Valtimon Haapajärvellä paatti mäni nurin

      Ikävä onnettomuus Haapajärvellä. Vene hörpppi vettä matkalla saaren. Veneessä ol 5 henkilöä, kolme uiskenteli rantaan,
      Nurmes
      27
      911
    7. Rakastuminenhan on psykoosi

      Ei ihme että olen täysin vailla järkeä sen asian suhteen. Eipä olis aikoinaan arvannut, että tossa se tyyppi menee, jonk
      Ikävä
      53
      807
    8. Olisinko mä voinut käsittää sut väärin

      Nyt mä kelaan päässäni kaikkea meidän välillä tapahtunutta. Jos mä sit kuitenkin tulkitsin sut väärin? Se, miten sä käyt
      Ikävä
      31
      732
    9. Tähän vaivaan ei auta kuin kaksi asiaa

      1. Tapaaminen uudestaan tai 2. Dementia Anteeksi kun olen olemassa🙄
      Ikävä
      60
      729
    10. Känniläiset veneessä?

      Siinä taas päästiin näyttämään miten tyhmiä känniläiset on. Heh heh "Kaikki osalliset ovat täysi-ikäisiä ja alkoholin v
      Nurmes
      26
      662
    Aihe