Integaali (x*ln(x)) potenssiin n nollasta ykköseen

Yritän laskea, Leibnizin metodiksiko sitä nyt kutsutaan kun lisätään uusi parametri, jonka jollain arvolla integraali saadaan ja derivoidaan (ja siirretään integraalimerkin alle)(?), tuollaista. Siis minä laitan t:n ln(x):ään eli ln(tx). Täällä on laskuni: https://www.desmos.com/calculator/bh4rvon3xa . Olen jo arvannut kaavan integraalin arvolle

n! / (n 1)^(n 1),

mutta tuossa laskemisessa on yksi kohta jota en saa menemään: Kun lasketaan I_n(t):tä, niin sinne tulee ylimääräinen x:ä. Desmoksessa g on I'(t) ja siinä alla on se muoto, johon pääsin. Miten tuosta? Pitäisikö antaa x:n potenssin olla m ja johtaa yleisempi kaava. Kokeilin osittaisintegraatiota, mutta sekään ei mielestäni toiminut.

11

157

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Siis integraalista tulee mukavasti n ulos, joka johtaa rekursiivisesti n!:ään kun saataisiin jäämään alempi I_n. Mutta mistäs 1/(n 1)^(n 1) saadaan? Merkitsen siis integraalia I_n(t). Derivaatalle saadaan

      I_n'(t) = n/t integraali nollasta ykköseen x (x*ln(tx))^(n-1) dx

      mutta tuosta en osaa jatkaa. Mitenkäs I_n(t) saadaan derivaatasta, ei oikein uskalla integroidakaan (vai mistä mihin (ykköseen oletettavasti) pitäisi??)

    • Anonyymi

      En nyt ehkä ihan saa esityksestäsi selvää mitä varsinaisesti tarkoitat. Kuitenkin, kts. Wikipedia: Leibnitz integral rule. Onko tuo Feynmanin temppu etsimäsi?

      • Anonyymi

        Sori. P.o. : Leibniz


      • Anonyymi
        Anonyymi kirjoitti:

        Sori. P.o. : Leibniz

        Vielä lisäys: Mihin tässä osittaisintegrointia kummempaa tarvitaan? Jo sillä on helppo osoittaa että vähän yleisemmin:

        Int(0 <= x <= 1) (x^m (ln(x))^n) dx = (- 1)^n * n! / (m 1)^(n 1)


      • Anonyymi kirjoitti:

        Vielä lisäys: Mihin tässä osittaisintegrointia kummempaa tarvitaan? Jo sillä on helppo osoittaa että vähän yleisemmin:

        Int(0 <= x <= 1) (x^m (ln(x))^n) dx = (- 1)^n * n! / (m 1)^(n 1)

        Joo, Feynmanin tempusta oli kyse. Joo, nyt näänkin, että kun ottaakin x^m * ln(x)^n, niin on helpompi. Eka tapaus n=0 tulee suoraan integroimalla ja sitten induktiivisesti joko osittaisintegroinnilla, tai Leibnizilä:

        I_n,m ' (t) = n/t (n-1)! / ((n 1)^m t^(n-1))

        eli sinne tulee t^(-n), joka integroidaan -1/(n 1) t^(-n 1):ksi eli sitä kauttahan se (n 1)^(m 1) tulee.
        Tuota toisen parametrin m ottamista vähän ounastelinkin, mutta en jotenkin vienyt ajatusta loppuun :D.


      • Anonyymi
        minkkilaukku kirjoitti:

        Joo, Feynmanin tempusta oli kyse. Joo, nyt näänkin, että kun ottaakin x^m * ln(x)^n, niin on helpompi. Eka tapaus n=0 tulee suoraan integroimalla ja sitten induktiivisesti joko osittaisintegroinnilla, tai Leibnizilä:

        I_n,m ' (t) = n/t (n-1)! / ((n 1)^m t^(n-1))

        eli sinne tulee t^(-n), joka integroidaan -1/(n 1) t^(-n 1):ksi eli sitä kauttahan se (n 1)^(m 1) tulee.
        Tuota toisen parametrin m ottamista vähän ounastelinkin, mutta en jotenkin vienyt ajatusta loppuun :D.

        Sekoiletko? Katsohan tarkemmin esittämääni tulosta.Siinä esiintyy (m 1)^(n 1) ja lisäksi (- 1)^n.


      • Anonyymi
        Anonyymi kirjoitti:

        Sekoiletko? Katsohan tarkemmin esittämääni tulosta.Siinä esiintyy (m 1)^(n 1) ja lisäksi (- 1)^n.

        Joo, miinus merkki unohtu mainita kaavoissa, mutta -1/(n 1) t^(-n 1):ksi :ssahan se on, joten -1 tulee joka kerta tekijäksi, joten yhteensä juuri (-1)^n. Huomasin kyllä kun olin jo viestin laittanut :D.


      • Anonyymi
        Anonyymi kirjoitti:

        Joo, miinus merkki unohtu mainita kaavoissa, mutta -1/(n 1) t^(-n 1):ksi :ssahan se on, joten -1 tulee joka kerta tekijäksi, joten yhteensä juuri (-1)^n. Huomasin kyllä kun olin jo viestin laittanut :D.

        Ei ole tarkoitukseni jankuttaa pikku asiasta mutta kiinnitin tuon - merkin lisäksi huomiotani siihen että viestissäsi / eilen 15:20 olivat m ja n vaihtaneet paikkaa ja lauseke oli virheellinen. Sitten kun n = m tuo ei enää näy.
        Sinulla luki " ...kauttahan se (n 1)^(m 1) tulee".


      • Anonyymi kirjoitti:

        Ei ole tarkoitukseni jankuttaa pikku asiasta mutta kiinnitin tuon - merkin lisäksi huomiotani siihen että viestissäsi / eilen 15:20 olivat m ja n vaihtaneet paikkaa ja lauseke oli virheellinen. Sitten kun n = m tuo ei enää näy.
        Sinulla luki " ...kauttahan se (n 1)^(m 1) tulee".

        Totta, ei se taida mennäkään läpi. Miten tästä jatkettaisiin:

        I_m,n'(t)
        = int_0^1 nx^m * ln(tx)^(n-1) * x /(tx) * x dx
        = n/t int_0^1 x^(m 1) ln(tx)^(n-1)

        Nyt t:n mukana olo tuo kuitenkin vaikeuksia. Mikä pitää ottaa induktio-oletukseksi (tai siis eihän sitä saa tuosta vaan ottaa vaan sen pitää olla totta). Ehkä ilman derivointia olisi helpompi. Osittaisintegroinnissa u = x^m ja v' = ln(x)^n (?) Mutta näin tämän tehtävän interointi merkin alla derivoinnin sovellutuksena, niin pitäisihän se jotenkin sitenkin mennä.


      • Anonyymi
        minkkilaukku kirjoitti:

        Totta, ei se taida mennäkään läpi. Miten tästä jatkettaisiin:

        I_m,n'(t)
        = int_0^1 nx^m * ln(tx)^(n-1) * x /(tx) * x dx
        = n/t int_0^1 x^(m 1) ln(tx)^(n-1)

        Nyt t:n mukana olo tuo kuitenkin vaikeuksia. Mikä pitää ottaa induktio-oletukseksi (tai siis eihän sitä saa tuosta vaan ottaa vaan sen pitää olla totta). Ehkä ilman derivointia olisi helpompi. Osittaisintegroinnissa u = x^m ja v' = ln(x)^n (?) Mutta näin tämän tehtävän interointi merkin alla derivoinnin sovellutuksena, niin pitäisihän se jotenkin sitenkin mennä.

        Kaava on siis

        Int(0,1) (x^m * (log(x))^n) dx = (- 1)^n * n!/(m 1)^(n 1)
        Kirjoitin nyt matematiikassa yleiseen tapaan log tuon ln-merkinnän sijasta. Harvemmin muita logaritmeja teoreettisissa käsittelyissä käytetään.

        Int(0,1) (x^m (log(x))dx = Int(0,1) (log(x) d(x^(m 1) / (m 1)) = Sij(0,1) (log(x) x^(m 1)/(m 1)
        - Int(0,1) (1/(m 1) * x^m)dx = - 1/(m 1)^2
        Kaava pitää siis paikkansa kun n = 1.

        Oletetaan nyt että kaava pätee arvoilla n ja m.

        Int(0,1) (x^m (log(x))^(n 1)) dx = Int(0,1) ((log(x))^(n 1) d(x^(m 1)/(m 1) =

        Sij(0,1) ((log(x))^(n 1) * x^(m 1)/(m 1) - Int(0,1) (x^(m 1)/(m 1) * (n 1) (log(x))^n* 1/x) dx=
        -(n 1)/(m 1)* Int(0,1) (x^m (log(x))^n)dx =
        -(n 1)/(m 1) * (- 1)^n * n!/((m 1)^(n 1) = (- 1) (n 1) * (n 1)!/(m 1)^(n 2)

        MOT


      • Anonyymi
        Anonyymi kirjoitti:

        Kaava on siis

        Int(0,1) (x^m * (log(x))^n) dx = (- 1)^n * n!/(m 1)^(n 1)
        Kirjoitin nyt matematiikassa yleiseen tapaan log tuon ln-merkinnän sijasta. Harvemmin muita logaritmeja teoreettisissa käsittelyissä käytetään.

        Int(0,1) (x^m (log(x))dx = Int(0,1) (log(x) d(x^(m 1) / (m 1)) = Sij(0,1) (log(x) x^(m 1)/(m 1)
        - Int(0,1) (1/(m 1) * x^m)dx = - 1/(m 1)^2
        Kaava pitää siis paikkansa kun n = 1.

        Oletetaan nyt että kaava pätee arvoilla n ja m.

        Int(0,1) (x^m (log(x))^(n 1)) dx = Int(0,1) ((log(x))^(n 1) d(x^(m 1)/(m 1) =

        Sij(0,1) ((log(x))^(n 1) * x^(m 1)/(m 1) - Int(0,1) (x^(m 1)/(m 1) * (n 1) (log(x))^n* 1/x) dx=
        -(n 1)/(m 1)* Int(0,1) (x^m (log(x))^n)dx =
        -(n 1)/(m 1) * (- 1)^n * n!/((m 1)^(n 1) = (- 1) (n 1) * (n 1)!/(m 1)^(n 2)

        MOT

        Johan tuohon kerkesi ainakin yksi kirjoitusvirhe. viimeisen yhtäläisyysmerkin jälkeen tulee olla
        (- 1)^(n 1) * (n 1)!/ (m 1)^(n 2)
        Kenkkuja kirjoitettavia tämmöiset!


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Tänään pyörit ajatuksissa enemmän, kun erehdyin lukemaan palstaa

      En saisi, silti toivon että sinä vielä palaat ja otetaan oikeasti selvää, hioituuko särmät ja sulaudummeko yhteen. Vuod
      Ikävä
      22
      4554
    2. Huomenta ihana

      Kauniskasvoinen ihanuus 😘 saan sut vielä
      Ikävä
      20
      3685
    3. Seiska: Anne Kukkohovi myy pikkuhousujaan ja antaa penisarvioita

      Melko hupaisaa: https://www.seiska.fi/vain-seiskassa/ex-huippumalli-anne-kukkohovin-amerikan-valloitus-vastatuulessa-myy
      Maailman menoa
      405
      2417
    4. Hei rakas...

      Miten on työpäivä sujunut? Rakastan sinua 💗
      Ikävä
      27
      2121
    5. Edelleen sitä on vaikea uskoa

      Että olisit oikeasti rakastunut muhun
      Ikävä
      34
      2014
    6. Nainen, sellaista tässä ajattelin

      Minulla on olo, että täällä on edelleen joku, jolla on jotain käsiteltävää. Hän ei ole päässyt lähtemään vielä vaan jost
      Ikävä
      239
      1969
    7. Toiveikas vai toivoton

      torstai? Ajatuksia?
      Ikävä
      35
      1784
    8. Vitsi mihin menit. Heti takasin.

      Mä näin sut tuu takasin! Oli kiire, niin en ehtiny sin perään!
      Ikävä
      15
      1698
    9. En ole koskaan kokenut

      Ennen mitään tällaista rakastumista. Tiedän että kaipaan sinua varmaan loppu elämän. Toivottavasti ei tarvitsisi vain ka
      Ikävä
      19
      1497
    10. Mukavaa päivää

      Mun rakkauden kohteelle ❤️ toivottavasti olet onnellinen
      Ikävä
      12
      1351
    Aihe