Pallosäiliön täyttö

Anonyymi

Pallomainen, viiden kuutiometrin kokoinen säiliö täytetään vedellä. Veden tilavuusvirta on 20 litraa minuutissa.

Mikä on säiliön pinnan nousunopeuden minimi? Entä keskiarvo?

13

79

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Tilavuusvirta on poikkipinta-ala*pinnan nopeus, ja on kokoajan vakio, eli nopeus on pienin, kun ala on suurin, eli siinä päivän tasaajalla.
      Lasketaan koko pallon tilavuudesta R, jolla lasketaan se päivän tasaajan poikkipinta-ala.
      Pinnan nopeus on sitten (0.02/60)/ päivän tasaajan poikkipinta-ala.
      Tuosta tulisi noin 9.43*10^-5 (m/s)

      Se keskiarvo voisi olla, paremman tiedon puuttuessa:
      2R korkean ja 5 kuution tilavuuden omaavan lieriön poikkipinta-ala*v=0.02/60.
      Tämä on kyllä pelkkä arvelu...tästä tulisi noin 14.14*10^-5 (m/s)

      • Anonyymi

        Tulisiko keskiarvo, jos pallon halkaisija jaettaisiin täyttymisajalla?


      • Anonyymi
        Anonyymi kirjoitti:

        Tulisiko keskiarvo, jos pallon halkaisija jaettaisiin täyttymisajalla?

        Tuo taitaa olla yleisempikin totuus, eli kun säiliön korkeus jaetaan säiliön täyttymisajalla, niin saadaan keskiarvo säiliön pinnan nousunopeudelle. Aivan säiliön muodosta riippumatta.

        Joku viitseliäs todistakoon asian matemaattisesti.


      • Anonyymi
        Anonyymi kirjoitti:

        Tuo taitaa olla yleisempikin totuus, eli kun säiliön korkeus jaetaan säiliön täyttymisajalla, niin saadaan keskiarvo säiliön pinnan nousunopeudelle. Aivan säiliön muodosta riippumatta.

        Joku viitseliäs todistakoon asian matemaattisesti.

        Totta! Olkoon täyttymisaika T ja h(t) korkeus hetkellä t. Analyysin peruslauseen mukaan

        integraali 0:sta T:hen { h'(t) 1/T }
        = 1/T * (h(T) - h(0))
        = h(T) / T


    • Olkoon pallon säde R (dm) ja virtausnopeus k (l/min). Merkitään T (min) aikaa jolloin säiliö tulee täyteen eli T = 4pi/(3k)*R^3 = 5000/k.
      Ratkaistaan ensin tilavuus V(h), kun korkeus on h. Rajoitetaan tässä h välille [0, R] eli täytetään pallo vain puolilleen. (Yläosan täyttö on symmetrinen). Esim integroimalla saadaan

      V(h) = -pi/3 h^3 pi*R*h^2

      Nyt tilavuus V on ajan t (min) funktio: V(t) = kt, joten sijoitetaan ylempään ja saadaan implisiittinen yhtälö

      -pi/(3k) h^3 pi*R/k h^2 = t

      Tästä voitaisiin kolmannen asteen kaavalla ratkaista h(t), mutta siitä ei tule mitään kaunista. Muistetaan että käänteisfunktion derivaatta on funktion derivaatan käänteisluku laskettuna funktion arvossa. Meillä on siis nyt h:[0, T] -> R funktion f: [0, 2R] -> R käänteisfunktiona missä f on

      f(x) = -pi/(3k) x^3 pi*R/k x^2

      Funktion f derivaatta on positiivinen, joten h'(t):n minimi löydetään etsimällä f'(x):n maksimi. Se on x = R ja saadaan h':n minimiksi saadaan (sijoitetaan parametrien arvot)

      k/(piR^2) = 0,057

      Tämähän oli jo intuitiivisesti selvää että pienimmillään korkeuden kasvu on kun on eniten alallisesti täytettävää eli puolessa välissä.

      Sitten keskiarvon kimppuun. Tässäkin voidaan käyttää symmetriaa eli riittää tutkia puolipalloa: yläosan täyttö menee samoilla nopeuksilla (mutta ajassa käänteisesti), joten keskiarvo tulee olemaan sama kuin puolipallon keskiarvo.

      Noh, integroidaan h':kkua ajan tasajakaumaa vasten (t on välillä [0, T/2])

      E[h'] = int_0^{T/2} h'(t) 2/T dt
      = 2/T * h(T/2)
      = 3k/(2pi*R^3) * R
      = 3k / (2pi*R^2)
      = 0,085

      • Anonyymi

        Näkyy olevan laatuna dm/min. Kun muuttaa m/s, niin koko lailla samat nopeudet kuin minullakin, ja noiden nopeuksien suhde on ihan tarkkaan 2/3 myös minulla.


      • Anonyymi

        Ei tässä ole kyse mistään satunnaismuuttujasta eikä "ajan tasajakautumasta".

        Integraalilaskun väliarvolause sanoo, että jos f(x) on jatkuva suljetulla välillä (a,b) niin a:n ja b:n välissä on aina sellainen arvo z että Int(a,b) (f(x) dx) = f(z) * (b - a).

        Tuota arvoa f(z) voidaan pitää funktion keskiatvona.
        Tässä palloesimerkissä lause sanoo: on olemassa sellainen arvo 0 < z < T että

        Int(0,T) (h'(t) dt) = h'(z) * T.h' :n "keskiarvo" on h'(z).
        Integraalin arvo = h(T) - h(0) = 2 R
        Siis h'(z) = 1/T * 2R
        Tässä T = 15000 s ja R = 1,0608 m joten keskiarvo h'(z) = 0,00014144 m/s = 0,0084864 m / min.
        250 min * h'(z) = 2,1216 m = 2 R


      • Anonyymi
        Anonyymi kirjoitti:

        Ei tässä ole kyse mistään satunnaismuuttujasta eikä "ajan tasajakautumasta".

        Integraalilaskun väliarvolause sanoo, että jos f(x) on jatkuva suljetulla välillä (a,b) niin a:n ja b:n välissä on aina sellainen arvo z että Int(a,b) (f(x) dx) = f(z) * (b - a).

        Tuota arvoa f(z) voidaan pitää funktion keskiatvona.
        Tässä palloesimerkissä lause sanoo: on olemassa sellainen arvo 0 < z < T että

        Int(0,T) (h'(t) dt) = h'(z) * T.h' :n "keskiarvo" on h'(z).
        Integraalin arvo = h(T) - h(0) = 2 R
        Siis h'(z) = 1/T * 2R
        Tässä T = 15000 s ja R = 1,0608 m joten keskiarvo h'(z) = 0,00014144 m/s = 0,0084864 m / min.
        250 min * h'(z) = 2,1216 m = 2 R

        h`(t) ei ole määritelty kun t=0 tai t=T


      • Anonyymi
        Anonyymi kirjoitti:

        h`(t) ei ole määritelty kun t=0 tai t=T

        Mitä väliä. Aina voi käydä lunttaamassa youtubesta sen, miten lasketaan derivaatan raja-arvo kun t->0 tai t->T.


      • Anonyymi
        Anonyymi kirjoitti:

        h`(t) ei ole määritelty kun t=0 tai t=T

        Niinpä. Väliarvolausetta ei voi suoraan soveltaa. Mutta tuon integraalin arvo I on tunnetulla rajamenettelyllä määrättävissä ja I = h(T) - h(0) = 2 R. Jos merkitään Z = 2R/T niin

        Z*T = I ja lukua Z voidaan pitää h' :n keskiarvona, onhan Z * T = 2 R.
        Itse asiassa inf >= h'(t) >= k/ ( pii*R^2) missä k = dV/dt = 1/3000 (m^3/s).
        h'(t) saa kaikki arvot tuolta väliltä ja 2R/T > k/(pii*R^2) joten siellä on piste z missä h'(z) = Z.


      • Anonyymi
        Anonyymi kirjoitti:

        Niinpä. Väliarvolausetta ei voi suoraan soveltaa. Mutta tuon integraalin arvo I on tunnetulla rajamenettelyllä määrättävissä ja I = h(T) - h(0) = 2 R. Jos merkitään Z = 2R/T niin

        Z*T = I ja lukua Z voidaan pitää h' :n keskiarvona, onhan Z * T = 2 R.
        Itse asiassa inf >= h'(t) >= k/ ( pii*R^2) missä k = dV/dt = 1/3000 (m^3/s).
        h'(t) saa kaikki arvot tuolta väliltä ja 2R/T > k/(pii*R^2) joten siellä on piste z missä h'(z) = Z.

        Pienen pieni korjaus:p.o. ... joten välillä 0 <= t <= T on piste z missä h'(z) = Z.

        Tarkastelen asiaa vielä väliarvolauseen avulla. Olkoon T-e >= t >= e > 0. Suljetulla välillä (T-e,e) voidaan käyttää väliarvolausetta ja välillä T-e > t > e on siis piste z(e) missä h'(z(e)) = 1/(T - 2 e) *(h(T-e)) - h(e)).
        lim(e -> 0) 1/(T - 2e)* (h(T-e) - h(e)) = 1/T * 2R = Z. Siis lim (e-> 0) h'(z(e)) =Z. Ja Z<inf. Koska h'(t) saa välillä 0<= t <= T kaikki arvot joissa inf >= h'(t) >= k/(pii* R^2) niin on olemassa piste 0 <z < T missä h'(z) = Z.


    • Anonyymi

      Kaikki pallot ovat litteitä. Tuon tietää jokainen astronomi. Ne täyttyvät vakionopeudella.

      • Anonyymi

        Kyllä. Oli ihan pakko.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. On ikävä sua

      Koko ajan
      Ikävä
      29
      2404
    2. Vielä kerran.

      Muista että olet ihan itse aloittanut tämän. En ei silti sinua syyllistä tai muutenkaan koskaan tule mainitsemaan tästä
      Ikävä
      370
      2012
    3. M nainen tiedätkö mitä

      Rovaniemellä sataa nyt lunta, just nyt kun lähden pohjoiseen. Älä ota mitään paineita tästä mun ihastumisesta sinuun, ti
      Ikävä
      18
      1504
    4. Pelkään suunnattomasti

      Että olet toiseen ihastunut. Se on lähes sietämätön ajatus koska koen että meidän tilanne on auki, selvittämättä. Eikä k
      Ikävä
      53
      917
    5. Parempi suorituskyky Urheiluharrastajien suosimasta lisäravinteesta hyötyisivät todennäköisesti kaik

      Parempi suorituskyky Urheiluharrastajien suosimasta lisäravinteesta hyötyisivät todennäköisesti kaikki muutkin. Se on ed
      Maailman menoa
      10
      881
    6. Mies, etko ole miettinyt

      että voit menettää yhteytemme ja minut lopullisesti, jos et tee mitään?
      Ikävä
      52
      783
    7. Olet ihan sairaan

      Kylmä mua kohtaan.
      Ikävä
      54
      731
    8. Shellin omistajan vaihdos.

      Uutta tuulta purjeisiin.Uuden yrittäjän toimesta .
      Kuhmo
      18
      710
    9. Mitä kuuluu

      Elämänirakkaus, sielunkumppani, peilikuvani 😘
      Ikävä
      25
      699
    10. Olette kyllästyneet

      Mutta hyvää huomenta kuitenkin. Mukava päivä tämäkin. 😊⚜️🦌🎄✨❤️
      Ikävä
      135
      623
    Aihe