Pallosäiliön täyttö

Anonyymi

Pallomainen, viiden kuutiometrin kokoinen säiliö täytetään vedellä. Veden tilavuusvirta on 20 litraa minuutissa.

Mikä on säiliön pinnan nousunopeuden minimi? Entä keskiarvo?

13

142

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Tilavuusvirta on poikkipinta-ala*pinnan nopeus, ja on kokoajan vakio, eli nopeus on pienin, kun ala on suurin, eli siinä päivän tasaajalla.
      Lasketaan koko pallon tilavuudesta R, jolla lasketaan se päivän tasaajan poikkipinta-ala.
      Pinnan nopeus on sitten (0.02/60)/ päivän tasaajan poikkipinta-ala.
      Tuosta tulisi noin 9.43*10^-5 (m/s)

      Se keskiarvo voisi olla, paremman tiedon puuttuessa:
      2R korkean ja 5 kuution tilavuuden omaavan lieriön poikkipinta-ala*v=0.02/60.
      Tämä on kyllä pelkkä arvelu...tästä tulisi noin 14.14*10^-5 (m/s)

      • Anonyymi

        Tulisiko keskiarvo, jos pallon halkaisija jaettaisiin täyttymisajalla?


      • Anonyymi
        Anonyymi kirjoitti:

        Tulisiko keskiarvo, jos pallon halkaisija jaettaisiin täyttymisajalla?

        Tuo taitaa olla yleisempikin totuus, eli kun säiliön korkeus jaetaan säiliön täyttymisajalla, niin saadaan keskiarvo säiliön pinnan nousunopeudelle. Aivan säiliön muodosta riippumatta.

        Joku viitseliäs todistakoon asian matemaattisesti.


      • Anonyymi
        Anonyymi kirjoitti:

        Tuo taitaa olla yleisempikin totuus, eli kun säiliön korkeus jaetaan säiliön täyttymisajalla, niin saadaan keskiarvo säiliön pinnan nousunopeudelle. Aivan säiliön muodosta riippumatta.

        Joku viitseliäs todistakoon asian matemaattisesti.

        Totta! Olkoon täyttymisaika T ja h(t) korkeus hetkellä t. Analyysin peruslauseen mukaan

        integraali 0:sta T:hen { h'(t) 1/T }
        = 1/T * (h(T) - h(0))
        = h(T) / T


    • Olkoon pallon säde R (dm) ja virtausnopeus k (l/min). Merkitään T (min) aikaa jolloin säiliö tulee täyteen eli T = 4pi/(3k)*R^3 = 5000/k.
      Ratkaistaan ensin tilavuus V(h), kun korkeus on h. Rajoitetaan tässä h välille [0, R] eli täytetään pallo vain puolilleen. (Yläosan täyttö on symmetrinen). Esim integroimalla saadaan

      V(h) = -pi/3 h^3 pi*R*h^2

      Nyt tilavuus V on ajan t (min) funktio: V(t) = kt, joten sijoitetaan ylempään ja saadaan implisiittinen yhtälö

      -pi/(3k) h^3 pi*R/k h^2 = t

      Tästä voitaisiin kolmannen asteen kaavalla ratkaista h(t), mutta siitä ei tule mitään kaunista. Muistetaan että käänteisfunktion derivaatta on funktion derivaatan käänteisluku laskettuna funktion arvossa. Meillä on siis nyt h:[0, T] -> R funktion f: [0, 2R] -> R käänteisfunktiona missä f on

      f(x) = -pi/(3k) x^3 pi*R/k x^2

      Funktion f derivaatta on positiivinen, joten h'(t):n minimi löydetään etsimällä f'(x):n maksimi. Se on x = R ja saadaan h':n minimiksi saadaan (sijoitetaan parametrien arvot)

      k/(piR^2) = 0,057

      Tämähän oli jo intuitiivisesti selvää että pienimmillään korkeuden kasvu on kun on eniten alallisesti täytettävää eli puolessa välissä.

      Sitten keskiarvon kimppuun. Tässäkin voidaan käyttää symmetriaa eli riittää tutkia puolipalloa: yläosan täyttö menee samoilla nopeuksilla (mutta ajassa käänteisesti), joten keskiarvo tulee olemaan sama kuin puolipallon keskiarvo.

      Noh, integroidaan h':kkua ajan tasajakaumaa vasten (t on välillä [0, T/2])

      E[h'] = int_0^{T/2} h'(t) 2/T dt
      = 2/T * h(T/2)
      = 3k/(2pi*R^3) * R
      = 3k / (2pi*R^2)
      = 0,085

      • Anonyymi

        Näkyy olevan laatuna dm/min. Kun muuttaa m/s, niin koko lailla samat nopeudet kuin minullakin, ja noiden nopeuksien suhde on ihan tarkkaan 2/3 myös minulla.


      • Anonyymi

        Ei tässä ole kyse mistään satunnaismuuttujasta eikä "ajan tasajakautumasta".

        Integraalilaskun väliarvolause sanoo, että jos f(x) on jatkuva suljetulla välillä (a,b) niin a:n ja b:n välissä on aina sellainen arvo z että Int(a,b) (f(x) dx) = f(z) * (b - a).

        Tuota arvoa f(z) voidaan pitää funktion keskiatvona.
        Tässä palloesimerkissä lause sanoo: on olemassa sellainen arvo 0 < z < T että

        Int(0,T) (h'(t) dt) = h'(z) * T.h' :n "keskiarvo" on h'(z).
        Integraalin arvo = h(T) - h(0) = 2 R
        Siis h'(z) = 1/T * 2R
        Tässä T = 15000 s ja R = 1,0608 m joten keskiarvo h'(z) = 0,00014144 m/s = 0,0084864 m / min.
        250 min * h'(z) = 2,1216 m = 2 R


      • Anonyymi
        Anonyymi kirjoitti:

        Ei tässä ole kyse mistään satunnaismuuttujasta eikä "ajan tasajakautumasta".

        Integraalilaskun väliarvolause sanoo, että jos f(x) on jatkuva suljetulla välillä (a,b) niin a:n ja b:n välissä on aina sellainen arvo z että Int(a,b) (f(x) dx) = f(z) * (b - a).

        Tuota arvoa f(z) voidaan pitää funktion keskiatvona.
        Tässä palloesimerkissä lause sanoo: on olemassa sellainen arvo 0 < z < T että

        Int(0,T) (h'(t) dt) = h'(z) * T.h' :n "keskiarvo" on h'(z).
        Integraalin arvo = h(T) - h(0) = 2 R
        Siis h'(z) = 1/T * 2R
        Tässä T = 15000 s ja R = 1,0608 m joten keskiarvo h'(z) = 0,00014144 m/s = 0,0084864 m / min.
        250 min * h'(z) = 2,1216 m = 2 R

        h`(t) ei ole määritelty kun t=0 tai t=T


      • Anonyymi
        Anonyymi kirjoitti:

        h`(t) ei ole määritelty kun t=0 tai t=T

        Mitä väliä. Aina voi käydä lunttaamassa youtubesta sen, miten lasketaan derivaatan raja-arvo kun t->0 tai t->T.


      • Anonyymi
        Anonyymi kirjoitti:

        h`(t) ei ole määritelty kun t=0 tai t=T

        Niinpä. Väliarvolausetta ei voi suoraan soveltaa. Mutta tuon integraalin arvo I on tunnetulla rajamenettelyllä määrättävissä ja I = h(T) - h(0) = 2 R. Jos merkitään Z = 2R/T niin

        Z*T = I ja lukua Z voidaan pitää h' :n keskiarvona, onhan Z * T = 2 R.
        Itse asiassa inf >= h'(t) >= k/ ( pii*R^2) missä k = dV/dt = 1/3000 (m^3/s).
        h'(t) saa kaikki arvot tuolta väliltä ja 2R/T > k/(pii*R^2) joten siellä on piste z missä h'(z) = Z.


      • Anonyymi
        Anonyymi kirjoitti:

        Niinpä. Väliarvolausetta ei voi suoraan soveltaa. Mutta tuon integraalin arvo I on tunnetulla rajamenettelyllä määrättävissä ja I = h(T) - h(0) = 2 R. Jos merkitään Z = 2R/T niin

        Z*T = I ja lukua Z voidaan pitää h' :n keskiarvona, onhan Z * T = 2 R.
        Itse asiassa inf >= h'(t) >= k/ ( pii*R^2) missä k = dV/dt = 1/3000 (m^3/s).
        h'(t) saa kaikki arvot tuolta väliltä ja 2R/T > k/(pii*R^2) joten siellä on piste z missä h'(z) = Z.

        Pienen pieni korjaus:p.o. ... joten välillä 0 <= t <= T on piste z missä h'(z) = Z.

        Tarkastelen asiaa vielä väliarvolauseen avulla. Olkoon T-e >= t >= e > 0. Suljetulla välillä (T-e,e) voidaan käyttää väliarvolausetta ja välillä T-e > t > e on siis piste z(e) missä h'(z(e)) = 1/(T - 2 e) *(h(T-e)) - h(e)).
        lim(e -> 0) 1/(T - 2e)* (h(T-e) - h(e)) = 1/T * 2R = Z. Siis lim (e-> 0) h'(z(e)) =Z. Ja Z<inf. Koska h'(t) saa välillä 0<= t <= T kaikki arvot joissa inf >= h'(t) >= k/(pii* R^2) niin on olemassa piste 0 <z < T missä h'(z) = Z.


    • Anonyymi

      Kaikki pallot ovat litteitä. Tuon tietää jokainen astronomi. Ne täyttyvät vakionopeudella.

      • Anonyymi

        Kyllä. Oli ihan pakko.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Eduskunnan setämiehet eivät häiritse

      Porvariston sedät kertoivat kuorossa, että eivät tiedä häirinnästä mitään.
      Maailman menoa
      312
      7567
    2. Jaguar i pace sähköauto hajosi. Jopa 100 tonnia akun vaihto. Edullisia kilometrejä

      https://www.iltalehti.fi/autouutiset/a/fcaa5ae4-c04d-414d-ac54-dab991758b2e Tuo että sähköautossa ei lämmitys toimi on
      Hybridi- ja sähköautot
      56
      3973
    3. PropsApp Koodi

      Haluatko ansaita ja kilpailla fiksusti samalla kun seuraat urheilua? Props tekee sen mahdolliseksi. Sovelluksessa pääset
      2
      3448
    4. Persut yrittävät epätoivon vimmalla

      kiertää häirintä asian https://www.iltalehti.fi/politiikka/a/5389f072-60d9-4ef8-aa7b-c11f0eda66cf jonka muut puolueet a
      Maailman menoa
      72
      3201
    5. Muistakaa demarit, että TE petitte, ei vihreät tai vas.liitto

      Te veitte eduskunnasta turvallisen tilan, veditte sen viemäristä alas. Te demarit, itsensä ylentäneet moraalinvartijat,
      Maailman menoa
      114
      2864
    6. "Skandaali muhii SDP:ssä" - "pelon ilmapiiri vallitsee"

      Puolueen johto on vähintään vastuussa ilmapiiristä, jossa häirinnän uhrit eivät ole saaneet ääntään kuuluviin. Vyyhdin
      Maailman menoa
      46
      2688
    7. IL: "Kyykyttämistä, alistamista, painostamista, huutamista ja tiuskimista SDP:n

      eduskuntaryhmässä." Häirintäkohu puolueen ympärillä paisuu. Iltalehden haastattelemien SDP-lähteiden mukaan eduskunta-
      Maailman menoa
      51
      2534
    8. Riikka runnoo: konkursseja eniten 30 vuoteen

      Vuonna 2025 Suomessa haettiin konkurssiin yhteensä 3 906 yritystä. Konkurssiluku oli suurin sitten vuoden 1996.
      Maailman menoa
      61
      2300
    9. Oletko ollut

      Oletko omasta mielestäsi ollut sokea asioille?
      Ikävä
      68
      2063
    10. Pitäiskö meidän tehdä jotain

      Mennä vaikka kihloihin?
      Ikävä
      101
      1963
    Aihe