Odemarkin kaavan laskeminen h:n suhteen

Hei,
Tarvisi saada Odemarkin kaava muutettua siten, että sillä voisi laskea kerrospaksuuden (h), kun lähtökantavuus(Ea) ja tavoitekantavuus(Ey) on tiedossa. Omat yhtälönratkaisu taitoni loppuivat kesken. Enkä saanut netistä löytyvillä ratkaisuohjelmilla tätä ratkaistua. Osaisiko ja viitsisikö joku auttaa?

Kaava: https://katu2020.info/2020/wp-content/uploads/2019/12/odemark-kantavuuskaava-2.png

Alkuperäisessä kaavassa 0,81 = n^2 = 0,9^2 ja 0,15 = a. Jos on helpompi ratkaista tuo yhtälö käyttäen noita vakioarvoja, se on ok.

Kiitos jo etu käteen avusta.

9

1474

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Siis h(E) = f(E, EY, EA), vai kuinka?

      Voi olla, että onnistuu vain numeerisesti ratkaisemalla.

      • Anonyymi

        Ainakaan wolframalphan solveri ei taipunut siihen. Texas instrumentsiin en jaksa ruveta näpyttelelmään. Tossa kaava kuitenkin atk-muodossa, jos joku haluaa yrittää.

        Ey=Ea/((1-(1/sqrt(1 0.81*(h/0.15)^2)))*(Ea/E) 1/sqrt(1 0.81*(h/0.15)^2*(E/Ea)^(2/3)))


      • Anonyymi
        Anonyymi kirjoitti:

        Ainakaan wolframalphan solveri ei taipunut siihen. Texas instrumentsiin en jaksa ruveta näpyttelelmään. Tossa kaava kuitenkin atk-muodossa, jos joku haluaa yrittää.

        Ey=Ea/((1-(1/sqrt(1 0.81*(h/0.15)^2)))*(Ea/E) 1/sqrt(1 0.81*(h/0.15)^2*(E/Ea)^(2/3)))

        Kun lausekkeeseen laitetaan numeroarvot symbolien E, Ea ja Ey paikalle, niin Wα laskee juuren numeroarvon. Esimerkiksi jos E = 200, Ea = 20 ja Ey = 50, niin h = 0,198, mikä lienee oikea arvo.

        Jos yritetään kokonaan analyyttistä ratkaisua, niin lausekkeista tulee näköjään niin pitkät, että symbolimatematiikkaohjelmistot helposti tukehtuvat normaaliasetuksillaan.

        Ratkaisu perustuu neljännen asteen yhtälön ratkaisukaavaan, joka tunnetusti on melkoisen pitkä.


    • Anonyymi

      Piti ihan kuukkeloida, mistä asiassa on todella kysymys. Ea, Ey ja E siis tunnetaan ja kaavasta pitäisi ratkaista h. Se käy helpoimmin, kun haarukoit kaavan oikealla puolella h:n arvoja siten, että yrität saada oikean puolen yhtäsuureksi kuin Ey.

      Käytännössä piirrät kaavan oikean puolen kuvaajan ja katsot, millä h:n arvolla se saa arvon Ey.

      Jos haluat opetella ratkaisuun jonkin yksinkertaisen numeerisen menetelmän, niin tutustu puolitusmenetelmään.

    • Anonyymi

      Näyttää yhtälölle saavan analyyttisenkin ratkaisun, mutta siitä tulee tavattoman pitkä. Kun vielä on kyse likiarvomenetelmästä, niin tuollaisessa ei ole paljon järkeä.

    • Anonyymi

      Näyttää sille saavan yksinkertaisemmankin analyyttisen likiarvoratkaisun. Ensiksi kehitetään oikea puoli pisteen h = 0 suhteen sarjaksi ja otetaan mukaan termit aina potenssiin h⁴ saakka. Näin saadaan toisen asteen yhtälö termin h² suhteen.

      En tarkastellut menettelyn tarkkuutta, mutta olettaisin pienillä h:n arvoilla sen olevan varsin hyvä.

      • Anonyymi

        Näyttää siltä että kommenteistasi ei taida olla aloittaja-kysyjälle paljonkaan hyötyä. Niistä saa vain tietää että olet muka löytänyt jonkin ratkaisun mutta et nyt sentään viitsi siitä tarkemmin kertoa! Arvokasta tietoa tosiaan?


      • Anonyymi
        Anonyymi kirjoitti:

        Näyttää siltä että kommenteistasi ei taida olla aloittaja-kysyjälle paljonkaan hyötyä. Niistä saa vain tietää että olet muka löytänyt jonkin ratkaisun mutta et nyt sentään viitsi siitä tarkemmin kertoa! Arvokasta tietoa tosiaan?

        Jos aloittaja ei ymmärrä menetelmän perusteita tai hänellä ei ole taitoa tai välineitä lausekkeita itse johtaa, on aivan turhaa esittää pitkiä tuloslausekkeita. Näin varsinkin, kun esitin tuolla aiemmin yksinkertaisen, toimivan graafisen ratkaisumenetelmän.


      • Anonyymi
        Anonyymi kirjoitti:

        Jos aloittaja ei ymmärrä menetelmän perusteita tai hänellä ei ole taitoa tai välineitä lausekkeita itse johtaa, on aivan turhaa esittää pitkiä tuloslausekkeita. Näin varsinkin, kun esitin tuolla aiemmin yksinkertaisen, toimivan graafisen ratkaisumenetelmän.

        Kokeilin yllä annettuja numeroarvoja sarjakehitelmäratkaisuun, ja tulokseksi sain h ≈ 0,175, mikä on 11 prosenttia liian pieni arvo.

        Kokonaisuutena totean edelleen, että yhtälön analyyttisen ratkaisuun ei kannata hirveästi panostaa, koska koko kaava on jonkinlainen approksimaatio varsin epämääräisestä mitoitustehtävästä. Näin riittää, kun luotettavan ratkaisun saa mahdollisimman helpolla, esimerkiksi juuri numeerisella puolitusmenetelmällä.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Ei sua enään tunnista

      Kun olet vanhentunut ja lihonut.
      Ikävä
      79
      4014
    2. Huomenet naiselle

      Harmittaa ettei ehkä nähdä enää koskaan. Näillä mennään sitten.
      Ikävä
      47
      3409
    3. Oletko pitkävihainen ja onko sinulla " huono muisti muisti "?

      Mitä asioita et unohda tai anna anteeksi ? Mitä asioita voit " unohtaa" tai unohtaa? Vastaa koskien kaivattuasi tai yle
      Ikävä
      51
      2471
    4. Kokoomus haluaa leikata vielä lisää sosiaaliturvasta

      Kokoomuksen Sanni-Granhn Laasonen pyytänyt KELA:aa selvittämään mistä leikataan vähäosaisilta vielä lisää sosiaaliturvas
      Maailman menoa
      344
      2031
    5. Mitä tapahtuu

      Syksyllä?
      Ikävä
      140
      1779
    6. Kaikesta muusta

      Mulla on hyvä fiilis. Mä selviän tästä ja sit musta tulee parempi ihminenkin. Ainut, mitä mun pitää nyt välttää on se ko
      Ikävä
      16
      1685
    7. Ikävöin sua

      Sä vaan pyörit mun mielessä, en saa sua unohdettua. Tilanteesta tekee vaikean sen kun molemmat ollaan varattuja ja tilan
      Ikävä
      13
      1491
    8. Neljä kuukautta vankeutta, kenelle?

      Kuka tuomittiin ehdottomaan neljän kuukauden vankeustuomioon ja korvauksiin?
      Suomussalmi
      12
      1309
    9. Etsin vastaantulevista sua

      Nyt kun sua ei oo, ikävöin sua niin v*tusti. 😔Jokaisesta etsin samoja piirteitä, samantyyppistä olemusta, samanlaista s
      Ikävä
      27
      1307
    10. Olet huippunainen

      Ja onneksi tiedät sen itsekin.
      Ikävä
      45
      1224
    Aihe