1. Selvitä kaikki funktion f(x)=x^2 integraalifunktiot, jotka sivuavat suoraa y=x. Mitkä ovat sivuamispisteiden koordinaatit?
- Tuon x^2 funktion integraalifunktio on tietysti x^3/3 C. Kuinka nuo sivuamispisteet pystyy selvittämään?
2. Suorakulmion kärkipisteet ovat origossa, positiivisella x-akselilla, y-akselilla ja käyrällä y=x^3. Kuinka iso osa suorakulmion alasta jää käyrän y=x^3
ja y-akselin väliin?
- Vaikka piirsin tämän, niin en millään hahmota, mikä on se määrätty väli, jonka pinta-ala täytyy laskea.
Osaisiko joku auttaa näissä eteenpäin? Laskut osan kyllä tehdä, kun vain saisi lausekkeen muodostettua.
Integraalitehtäviin apua?
5
123
Vastaukset
- Anonyymi
1. esim. x > 0 , y > 0 -kvadraatissa funktio kuten x ^ 3 käy äärettömään. Varmaan tässä tarkoitetaan, että se sivuaa suoraa y=x vain jos kyseinen funktio on aina suurempiarvoinen kuin y=x, mutta esiiintyy yhteinen piste tai useampi. Jos tutkitaan suoran sivuamista, voitaisiin käyttää myös sitä, että funktion derivaatan antama suora on yhteisessä pisteessä tämä suora. Mutta yleisessä tapauksessa kirjoitat yhtälöitä ja epäyhtälöitä, joista ratkaistaan C ja koordinaattipisteet.
2. Ei ole välttämättä yhtä määrättyä väliä. Kirjoita suorakulmion koordinaatit symbolein kuten (x,y) = (a, b). Koeta sitten tehdä tehtävä loppuun. - Anonyymi
1. Kun käyrä sivuaa toista jossain pisteessä, siinä niillä pitää olla sama derivaatta. Toinen käyristä on nyt suora, jolla on vakioderivaatta: 1. Joten kysytyn integraalifunktion derivaattafunktion, x^2, pitää saada sama arvo. Helposti nähdään, että tuo toteutuu kahdella x arvolla. Sitten vaan sovitetaan integraalifunktion C niin, että kulkee kyseisten pisteiden kautta.
- Anonyymi
2. Nähdään, että suorakulmion ala on x^4 ja myös integraalifunktiot ovat x^4 astetta. Siksi x arvosta riippumatta x^3 jakaa suorakulmion kahteen yhtä suureen osaan.
- Anonyymi
Siis jakaa kahteen osaan samassa suhteessa.
- Anonyymi
1. x^3/3 c = x ja x^2 = 1 (derivaatoilla sama arvo sivuamispisteissä)
Siis x = /- 1
1/3 c = 1 joten c = 2/3
- 1/3 c = - 1 joten c = - 2/3.
Kysytyt integraalifunktiot ovat siis
y(x) = x^3/3 2/3 ja y(x) = x^3/3 - 2/3.
2. x-akselilla olevan sivun pituus olkoon x. Suorakulmion korkeus on x^3.
Käyrän y = x^3 ja x-akselin väliin jää ala Int(0,x) t^3 dt = x^4/4. Koko suorakulmion ala on x*x^3 = x^4.,
(x^4 - x^4/4) / x^4 = 3/4.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Ikävöin sinua kokoyön!
En halua odottaa, että voisin näyttää sinulle kuinka paljon rakastan sinua. Toivon, että uskot, että olen varsin hullun614388KALAJOEN UIMAVALVONTA
https://www.kalajokiseutu.fi/artikkeli/ei-tulisi-mieleenkaan-jattaa-pienta-yksinaan-hiekkasarkkien-valvomattomalla-uimar1503187Jos sinä olisit pyrkimässä elämääni takaisin
Arvelisin sen johtuvan siitä, että olisit taas polttanut jonkun sillan takanasi. Ei taida löytyä enää kyliltä naista, jo482502Kadonnut poika hukkunut lietteeseen mitä kalajoella nyt on?
Jätelautta ajautunut merelle ja lapsi uponnut jätelautan alle?512435- 982115
- 241883
- 231632
- 301616
- 1611484
- 341253