Miten laskea kaarevan vektorin suuruus?

Anonyymi

Kun auto menee ympyrärataa tasaisella vauhdilla nii sit sen nopeus on tasanen ja kiihtyvyys nolla nii sit se nopeus on sellane kaareva vektori??

https://postimg.cc/5HDTQV0f

20

226

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Varmaan kannattaa katsoa wikipediasta tai matikan oppikirjasta kohdasta vektorin kaarevuus.
      On tuossa senverran erikoiset kaavat että ei kannata tälle palstalle ruveta kopioimaan.

    • Anonyymi

      Kannattaisiko tehdä koordinaatiston muunnosa.

    • Anonyymi

      Nopeusvektori on aina suora.

      Kullakin ajanhetkellä autolla on nopeutta täsmälleen yhteen suuntaan. Jos siihen kohdistuu (joka hetki) nopeusvektoria vastaan kohtisuora voima, se ajaa ympyräradalla.

    • Anonyymi

      Keskipakovoima aiheuttaa nopeusvektorin kaareutumisen ulospäin.
      Keskihakuvoima aiheuttaa nopeusvektorin kaareutumisen sisäänpäin.
      Kiertävä voima aiheuttaa nopeusvektorin menevän korkkiruuvin muotoiseksi ja silloin päästään spiraaliradalle.

      • Anonyymi

        Kappaleen kulkema rata r(t) voi kaareutua, mutta nopeusvektori v(t) ja kiihtyvyysvektori a(t) ovat aina suoria. Jos kappale on ympyräradalla ja sen nopeuden itseisarvo eli vauhti on suurempi kuin nolla, on kappaleella aina kiihtyvyyttä, sillä nopeuden suunnan muutos aiheuttaa kiihtyvyyttä vaikka vauhti olisikin vakio.


    • Anonyymi

      Jos vektori on riittävän pitkä ja kaareva, niin sitten sen kärki päätyy samaan pisteeseen kuin mistä vektori alkaakin.
      Jos taas vektori on kaarevuuden lisäksi kierevä niin sitten sen kärki sattuu jonnekin ihan muualle.

    • Anonyymi

      Olisko kyseessä dynaaminen vektori, jonka asentokulma muuttuu esimerkiksi ajan tai paikan funktiona?

    • Anonyymi

      "Kun auto menee ympyrärataa tasaisella vauhdilla nii sit sen nopeus on tasanen ja kiihtyvyys nolla nii sit se nopeus on sellane kaareva vektori??"

      Aloittajalla on käsitteet hieman hakusessa. Vektori on aina lineaarinen. Vaikkakin auton vauhdin muutos on nolla, siihen vaikuttaa nopusvektoria kohtisuoraan oleva voima, joka aiheuttaa radalla pysymisen, tässä tapauksessa siis sivuttaiskiihtyvyyttä. Nopeusvektori voidaan toki esittää esim. ajan tai paikan funktiona. "kaarevaa vektoria" ei kuitenkaan ole olemassa.

      • Anonyymi

        Kyllä aloittajan kuviossa sellainen kaareva vektori on joten puhut soopaa.


    • Anonyymi

      Aloittaja on varmaankin tarkoittanut tuon "kaarevan vektorin" vitsiksi nähtyään tuon esittämänsä kuvan.

      Kyllä ovat taas palstan tosikot tosissaan!

    • Anonyymi

      Yleisesti ottaen matematiikassa pätee, että vektori voidaan jakaa koordinaattiakselien mukaisiin komponentteihin. Matematiikassa pätee myös että koordinaattiakselit voivat olla kaarevia.
      Mikään ei estä soveltamasta kyseisiä matemaattisia totuuksia fysikaaliseen nopeusvektoriin. Tuloksena saadut komponentit ovat myös vektoreita.

      Ja sitten se olennaisin mietittävä kohta, mikäli koordinaattiakseli on kaareva, onko sitä vastaava komponentti (mikä sekin on vektori) myös kaareva, vaiko ihan suora?
      Mikäli suora, niin minkä suuntainen suora, kun kaarevan koordinaattiakselin suunta muuttuu paikan mukana?
      Tässä tulee huomata että aloituksessa puhuttiin autosta, eikä massakeskipisteestä. Edellisellä on nollasta poikkeava dimensio jokaiseen suuntaan, joten jokaista auton pistettä vastaa eri suuntainen koordinaattiakselin suuntainen vektori. Aika hankalaksi menee tälläkin oletuksella, jos tosiaan jostain syystä olisi pakko käyttää kaarevaa koordinaatistoa tilanteen tarkastelussa.

      • Anonyymi

        Höpö höpö! Sinulla ei ole mitään käsitystä asiasta. Perehtyisit edes vähän differentiaaligeometriaan ennenkuin kommentoit "viisauksinesi".


      • Anonyymi
        Anonyymi kirjoitti:

        Höpö höpö! Sinulla ei ole mitään käsitystä asiasta. Perehtyisit edes vähän differentiaaligeometriaan ennenkuin kommentoit "viisauksinesi".

        Ei kun tähän sovelletaan pallokoordinaatistoa.


    • Anonyymi
      • Anonyymi

        Jos on oikein pitkä vektori napakoordinaatistossa niin siitä tulee väkisinkin kaareva.


      • Anonyymi

        Aika hölmöä määritellä samalla pisteelle useampi vaihtoehtoinen koordinaatti, kuten tuon pdf:n alussa napakoordinaatistossa tehdään. Kulman määrittelyalueeksi pitäisi toisesta < merkistä poistaa yhtäsuuruus, jotta tuo olisi yksikäsitteistä. Ja sitten tehdään vielä sama virhe toiseen kertaan, kun otetaan alueeksi 0... 2*pii sijasta -pii...pii.
        Tuokin asia opetettiin samassa paikassa muutama kymmennen vuotta sitten paremmin, ilman tuollaisia lapsuksia.


    • Anonyymi

      Kaareva rata tarkoittaa, että nopeus muuttuu (ainakin suunta) ajan funktiona. Nopeus kun on vektorisuure. Nopeuden muutos aiheuttaa kiihtyvyyden.

      • Anonyymi

        Entäs jos nopeus ja kiihtyvyys on kaarevia.


    • Anonyymi

      Mitä näet ei ole ikinä tyotta, siis miytä silmäsi näkevät on aina valhetyyta.

      Noissa jossain ympyrä, pallo laskennoissa on hyvä kun jotkut grafdiikkakiihdyttimet voi laittaa laskemaan sellaisia, määrää vain tekemään.

    • Anonyymi

      Vektorit ovat absoluuttisia olioita eivätkä riipu koordinaateista. Eri koordinaatistoissa niillä on eri komponentit mutta itse vektorit ovat koordinaatistoista riippumattomia. Koordinaatistojen välillä voi olla kuvaukset joiden mukaan vektorien komponentit muuttuvat mutta itse vektori ei muutu mihinkään.

      Vektorilla ei ole sellaisia ominaisuuksia kuin "kaarevuus".

      Liikkuvan kappaleen rata voi olla kaareva mutta nopeusvektori radan kussakin pisteessä on on vain tuollainen kuvaamani vektori.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis

      Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu
      Maailman menoa
      370
      3184
    2. Tässä totuus jälleensyntymisestä - voit yllättyä

      Jumalasta syntyminen Raamatussa ei tässä Joh. 3:3. ole alkukielen mukaan ollenkaan sanaa uudestisyntyminen, vaan pelkä
      Jälleensyntyminen
      315
      1516
    3. En kadu sitä, että kohtasin hänet

      mutta kadun sitä, että aloin kirjoittamaan tänne palstalle. Jollain tasolla se saa vain asiat enemmän solmuun ja tekee n
      Ikävä
      84
      1312
    4. Mitään järkeä?

      Että ollaan erillään? Kummankin pää on kovilla.
      Ikävä
      108
      1311
    5. Noniin rakas

      Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi
      Ikävä
      99
      1305
    6. Oisko mitenkään mahdollisesti ihan pikkuisen ikävä..

      ...edes ihan pikkuisen pikkuisen ikävä sulla mua??.. Että miettisit vaikka vähän missähän se nyt on ja oiskohan hauska n
      Ikävä
      59
      1255
    7. Lapuan sanomissa käy rytinä

      Pistivät sitten päätoimittajan pihalle
      Lapua
      48
      1155
    8. Helena Koivu : Ja kohta mennään taas

      Kohta kohtalon päivä lähestyy kuinka käy Helena Koivulle ? Kenen puolella olet? Jos vastauksesi on Helenan niin voisi
      Kotimaiset julkkisjuorut
      80
      1062
    9. Au pair -työ Thaimaassa herättää kiivasta keskustelua somessa: "4cm torakoita, huumeita, tauteja..."

      Au pairit -sarjan uusi kausi herättää keskustelua Suomi24 Keskustelupalvelussa. Mielipiteitä ladataan puolesta ja vastaa
      Tv-sarjat
      25
      960
    10. Oot ihana

      Toivottavasti nähdään sattumalta jonain kesäpäivänä♥️🥺🫂
      Ikävä
      33
      847
    Aihe