Neliö neliön sisällä

Anonyymi-ap

Hei! En kaipaa vastauksia kotitehtäviin, koska kyseessä ei ole kotitehtävä. Koetan etsiä oppimateriaalia seuraavaan dilemmaan, mutta en oikein tiedä millä hakea.

Sinulla on neliö jonka sivu on 10cm. Sen sisällä on neliö jonka sivu on 9cm. Sisempää neliötä käännetään niin, että se ottaa kulmistaan kiinni ulompaan neliöön. Muodostuu neljä kolmiota, joiden hypotenuusa on 9cm ja kulma C on 90 astetta. Miten lasken sivujen a ja b pituudet ja kulmat A ja B? Hakusanoja jos saisi niin olisi kiva.

10

320

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Pythagoraan lauseen mukaan suorakulmaisen kolmion kateettien neliöiden summa on hypotenuusan neliö. Neliö tarkoittaa sivun pituuden toista potenssia.

      Sivun piituudet ovat tässä, sen jälkeen voit laskea kulmat.
      (10-x)^2+x^2=9^2

      • Anonyymi

        Kiitos vastauksestasi, sain pulman ratkaistua :)


      • Anonyymi
        Anonyymi kirjoitti:

        Kiitos vastauksestasi, sain pulman ratkaistua :)

        Jos neliön sivun pituus on 100 cm ja sen sisällä on neliö, jonka sivun pituus 99 cm. Vastaavasti 99 cm:n neliön sisällä on 98 cm:n neliö ja sen sisällä 97 cm:n neliö. Tätä jatketaansentin välein kunnes 2 cm:n neliön sisällä on 1 cm:n neliö. Yhteensä siis sata neliötä.

        Oletetaan kaikkien neliöiden keskipisteiden olevan koko ajan samassa pisteessä. Kuinka monta astetta pienintä neliötä pystyy kääntämään maksimissaan edestakaisin ilman, että isoin neliö liikkuu?


      • Anonyymi
        Anonyymi kirjoitti:

        Jos neliön sivun pituus on 100 cm ja sen sisällä on neliö, jonka sivun pituus 99 cm. Vastaavasti 99 cm:n neliön sisällä on 98 cm:n neliö ja sen sisällä 97 cm:n neliö. Tätä jatketaansentin välein kunnes 2 cm:n neliön sisällä on 1 cm:n neliö. Yhteensä siis sata neliötä.

        Oletetaan kaikkien neliöiden keskipisteiden olevan koko ajan samassa pisteessä. Kuinka monta astetta pienintä neliötä pystyy kääntämään maksimissaan edestakaisin ilman, että isoin neliö liikkuu?

        Pienimmän neliön pitää olla tietysti 3 cm. Eli neliöitä onkin yhtensä 98.

        (2 cm:n neliö pyörii ihan vapaasti 3 cm:n neliön sisällä ja 1 cm:n neliö 2 cm:n neliön sisällä.)


      • Anonyymi
        Anonyymi kirjoitti:

        Pienimmän neliön pitää olla tietysti 3 cm. Eli neliöitä onkin yhtensä 98.

        (2 cm:n neliö pyörii ihan vapaasti 3 cm:n neliön sisällä ja 1 cm:n neliö 2 cm:n neliön sisällä.)

        Hauska tehtävä!
        Minä sain vastaukseksi noin 3,965 radiaania: https://www.desmos.com/calculator/rtrncuyfqc
        Tai siis siitä tilanteesta, että kaikki neliöt ovat yhdensuuntaisia voi kääntää tuon verran yhteen suuntaan, mutta voihan sitä kääntää myös toiseen suuntaan, joten tuplat tuosta olisi vastaus.


      • Anonyymi
        Anonyymi kirjoitti:

        Hauska tehtävä!
        Minä sain vastaukseksi noin 3,965 radiaania: https://www.desmos.com/calculator/rtrncuyfqc
        Tai siis siitä tilanteesta, että kaikki neliöt ovat yhdensuuntaisia voi kääntää tuon verran yhteen suuntaan, mutta voihan sitä kääntää myös toiseen suuntaan, joten tuplat tuosta olisi vastaus.

        Hieno esimerkki!
        Pitäisikin opetella käyttämään desmossia. Latasin nyt kännykkäänkin.

        Näyttää kuin kuvio pyörisi (keskeltä) zoomattaessa!


      • Anonyymi
        Anonyymi kirjoitti:

        Hieno esimerkki!
        Pitäisikin opetella käyttämään desmossia. Latasin nyt kännykkäänkin.

        Näyttää kuin kuvio pyörisi (keskeltä) zoomattaessa!

        Tein vielä version, jossa pienintä neliötä voi itse pyörittää (vain yhteen suuntaan) ja se pyörittää mukanaan niitä, jotka ottavat kiinni: https://www.desmos.com/calculator/qe5l5jjgfh

        Tuo kulmien sarjahan muuten hajaantuu eli jos neliöitä on äärettömästi, niin sisimmäistä voi pyörittää miten paljon vaan. Arkustangentti on origossa lineaarinen ja se rationaalifunktio, joka sen sisälle tulee on about 1/(sivulla), joten sarja on about harmoninen. Täysi kierros (suuntaansa) tulee ekan kerran vissiin kun on 1004 neliötä.

        Entäpä vastaava tehtävä tasasivuisille kolmioille? Tein vähän jo aihiota Desmokseen: https://www.desmos.com/calculator/mnz5rogogm Pitäisi vaan se kulman kaava selvittää.


      • Anonyymi
        Anonyymi kirjoitti:

        Tein vielä version, jossa pienintä neliötä voi itse pyörittää (vain yhteen suuntaan) ja se pyörittää mukanaan niitä, jotka ottavat kiinni: https://www.desmos.com/calculator/qe5l5jjgfh

        Tuo kulmien sarjahan muuten hajaantuu eli jos neliöitä on äärettömästi, niin sisimmäistä voi pyörittää miten paljon vaan. Arkustangentti on origossa lineaarinen ja se rationaalifunktio, joka sen sisälle tulee on about 1/(sivulla), joten sarja on about harmoninen. Täysi kierros (suuntaansa) tulee ekan kerran vissiin kun on 1004 neliötä.

        Entäpä vastaava tehtävä tasasivuisille kolmioille? Tein vähän jo aihiota Desmokseen: https://www.desmos.com/calculator/mnz5rogogm Pitäisi vaan se kulman kaava selvittää.

        Hienosti toimii. Kesti vain hiukan aikaa löytää se rot sliderin alla piilossa ollut käynnistysnappi.

        Jos pienin neliö on kiinteä ja aloitetaan pyörittämään isointa neliötä, niin kuvio käyttäytynee hiukan eri tavalla.


      • Anonyymi
        Anonyymi kirjoitti:

        Hienosti toimii. Kesti vain hiukan aikaa löytää se rot sliderin alla piilossa ollut käynnistysnappi.

        Jos pienin neliö on kiinteä ja aloitetaan pyörittämään isointa neliötä, niin kuvio käyttäytynee hiukan eri tavalla.

        Sitä voi vetää myös kuvan pisteestä, joka on liukusäätimen luvun avulla määritetty. Ilmeisesti kun (cos, sin) -parametrisaatiolla määrittelee, niin Desmos ymmärtää sen pyöritykseksi. Affiinit a*((luku)+b) toimivat myös mutta muut monimutkaisemmat funktiot ei(?). Ja jos sen laittaa riippumaan kahdesta säätimestä, niin silloin se näyttää olevan melko sattumanvaraista kumpi säätyy, kun pistettä liikuttaa. Tämän takia tuossa kolmio-tapauksessa laitoinkin, kun mulla on siinä se eka kolmio parametrina n_1, niin muodossa n_1 = 1/1, jotta siitä ei tule liukusäädintä.
        Mutta tokihan niitä liukusäätimiä voi säätää sieltä funktiopaneelin puoleltakin.


      • Anonyymi
        Anonyymi kirjoitti:

        Sitä voi vetää myös kuvan pisteestä, joka on liukusäätimen luvun avulla määritetty. Ilmeisesti kun (cos, sin) -parametrisaatiolla määrittelee, niin Desmos ymmärtää sen pyöritykseksi. Affiinit a*((luku) b) toimivat myös mutta muut monimutkaisemmat funktiot ei(?). Ja jos sen laittaa riippumaan kahdesta säätimestä, niin silloin se näyttää olevan melko sattumanvaraista kumpi säätyy, kun pistettä liikuttaa. Tämän takia tuossa kolmio-tapauksessa laitoinkin, kun mulla on siinä se eka kolmio parametrina n_1, niin muodossa n_1 = 1/1, jotta siitä ei tule liukusäädintä.
        Mutta tokihan niitä liukusäätimiä voi säätää sieltä funktiopaneelin puoleltakin.

        Kolmion kaavaksi sain (kosini- ja sinilauseita käyttäen): https://www.desmos.com/calculator/wf3hqtirbr

        Vakiota vaille samanlainen rajakäyttäytyminenhän tuossa taitaa tulla.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis

      Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu
      Maailman menoa
      271
      2360
    2. En kadu sitä, että kohtasin hänet

      mutta kadun sitä, että aloin kirjoittamaan tänne palstalle. Jollain tasolla se saa vain asiat enemmän solmuun ja tekee n
      Ikävä
      83
      1031
    3. Oisko mitenkään mahdollisesti ihan pikkuisen ikävä..

      ...edes ihan pikkuisen pikkuisen ikävä sulla mua??.. Että miettisit vaikka vähän missähän se nyt on ja oiskohan hauska n
      Ikävä
      58
      1031
    4. Mitään järkeä?

      Että ollaan erillään? Kummankin pää on kovilla.
      Ikävä
      108
      1000
    5. Noniin rakas

      Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi
      Ikävä
      81
      941
    6. Lapuan sanomissa käy rytinä

      Pistivät sitten päätoimittajan pihalle
      Lapua
      44
      861
    7. Au pair -työ Thaimaassa herättää kiivasta keskustelua somessa: "4cm torakoita, huumeita, tauteja..."

      Au pairit -sarjan uusi kausi herättää keskustelua Suomi24 Keskustelupalvelussa. Mielipiteitä ladataan puolesta ja vastaa
      Tv-sarjat
      21
      848
    8. Helena Koivu : Ja kohta mennään taas

      Kohta kohtalon päivä lähestyy kuinka käy Helena Koivulle ? Kenen puolella olet? Jos vastauksesi on Helenan niin voisi
      Kotimaiset julkkisjuorut
      67
      756
    9. Oot ihana

      Toivottavasti nähdään sattumalta jonain kesäpäivänä♥️🥺🫂
      Ikävä
      33
      697
    10. Tässä totuus jälleensyntymisestä - voit yllättyä

      Jumalasta syntyminen Raamatussa ei tässä Joh. 3:3. ole alkukielen mukaan ollenkaan sanaa uudestisyntyminen, vaan pelkä
      Jälleensyntyminen
      299
      694
    Aihe