Neliö neliön sisällä

Anonyymi-ap

Hei! En kaipaa vastauksia kotitehtäviin, koska kyseessä ei ole kotitehtävä. Koetan etsiä oppimateriaalia seuraavaan dilemmaan, mutta en oikein tiedä millä hakea.

Sinulla on neliö jonka sivu on 10cm. Sen sisällä on neliö jonka sivu on 9cm. Sisempää neliötä käännetään niin, että se ottaa kulmistaan kiinni ulompaan neliöön. Muodostuu neljä kolmiota, joiden hypotenuusa on 9cm ja kulma C on 90 astetta. Miten lasken sivujen a ja b pituudet ja kulmat A ja B? Hakusanoja jos saisi niin olisi kiva.

10

249

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Pythagoraan lauseen mukaan suorakulmaisen kolmion kateettien neliöiden summa on hypotenuusan neliö. Neliö tarkoittaa sivun pituuden toista potenssia.

      Sivun piituudet ovat tässä, sen jälkeen voit laskea kulmat.
      (10-x)^2+x^2=9^2

      • Anonyymi

        Kiitos vastauksestasi, sain pulman ratkaistua :)


      • Anonyymi
        Anonyymi kirjoitti:

        Kiitos vastauksestasi, sain pulman ratkaistua :)

        Jos neliön sivun pituus on 100 cm ja sen sisällä on neliö, jonka sivun pituus 99 cm. Vastaavasti 99 cm:n neliön sisällä on 98 cm:n neliö ja sen sisällä 97 cm:n neliö. Tätä jatketaansentin välein kunnes 2 cm:n neliön sisällä on 1 cm:n neliö. Yhteensä siis sata neliötä.

        Oletetaan kaikkien neliöiden keskipisteiden olevan koko ajan samassa pisteessä. Kuinka monta astetta pienintä neliötä pystyy kääntämään maksimissaan edestakaisin ilman, että isoin neliö liikkuu?


      • Anonyymi
        Anonyymi kirjoitti:

        Jos neliön sivun pituus on 100 cm ja sen sisällä on neliö, jonka sivun pituus 99 cm. Vastaavasti 99 cm:n neliön sisällä on 98 cm:n neliö ja sen sisällä 97 cm:n neliö. Tätä jatketaansentin välein kunnes 2 cm:n neliön sisällä on 1 cm:n neliö. Yhteensä siis sata neliötä.

        Oletetaan kaikkien neliöiden keskipisteiden olevan koko ajan samassa pisteessä. Kuinka monta astetta pienintä neliötä pystyy kääntämään maksimissaan edestakaisin ilman, että isoin neliö liikkuu?

        Pienimmän neliön pitää olla tietysti 3 cm. Eli neliöitä onkin yhtensä 98.

        (2 cm:n neliö pyörii ihan vapaasti 3 cm:n neliön sisällä ja 1 cm:n neliö 2 cm:n neliön sisällä.)


      • Anonyymi
        Anonyymi kirjoitti:

        Pienimmän neliön pitää olla tietysti 3 cm. Eli neliöitä onkin yhtensä 98.

        (2 cm:n neliö pyörii ihan vapaasti 3 cm:n neliön sisällä ja 1 cm:n neliö 2 cm:n neliön sisällä.)

        Hauska tehtävä!
        Minä sain vastaukseksi noin 3,965 radiaania: https://www.desmos.com/calculator/rtrncuyfqc
        Tai siis siitä tilanteesta, että kaikki neliöt ovat yhdensuuntaisia voi kääntää tuon verran yhteen suuntaan, mutta voihan sitä kääntää myös toiseen suuntaan, joten tuplat tuosta olisi vastaus.


      • Anonyymi
        Anonyymi kirjoitti:

        Hauska tehtävä!
        Minä sain vastaukseksi noin 3,965 radiaania: https://www.desmos.com/calculator/rtrncuyfqc
        Tai siis siitä tilanteesta, että kaikki neliöt ovat yhdensuuntaisia voi kääntää tuon verran yhteen suuntaan, mutta voihan sitä kääntää myös toiseen suuntaan, joten tuplat tuosta olisi vastaus.

        Hieno esimerkki!
        Pitäisikin opetella käyttämään desmossia. Latasin nyt kännykkäänkin.

        Näyttää kuin kuvio pyörisi (keskeltä) zoomattaessa!


      • Anonyymi
        Anonyymi kirjoitti:

        Hieno esimerkki!
        Pitäisikin opetella käyttämään desmossia. Latasin nyt kännykkäänkin.

        Näyttää kuin kuvio pyörisi (keskeltä) zoomattaessa!

        Tein vielä version, jossa pienintä neliötä voi itse pyörittää (vain yhteen suuntaan) ja se pyörittää mukanaan niitä, jotka ottavat kiinni: https://www.desmos.com/calculator/qe5l5jjgfh

        Tuo kulmien sarjahan muuten hajaantuu eli jos neliöitä on äärettömästi, niin sisimmäistä voi pyörittää miten paljon vaan. Arkustangentti on origossa lineaarinen ja se rationaalifunktio, joka sen sisälle tulee on about 1/(sivulla), joten sarja on about harmoninen. Täysi kierros (suuntaansa) tulee ekan kerran vissiin kun on 1004 neliötä.

        Entäpä vastaava tehtävä tasasivuisille kolmioille? Tein vähän jo aihiota Desmokseen: https://www.desmos.com/calculator/mnz5rogogm Pitäisi vaan se kulman kaava selvittää.


      • Anonyymi
        Anonyymi kirjoitti:

        Tein vielä version, jossa pienintä neliötä voi itse pyörittää (vain yhteen suuntaan) ja se pyörittää mukanaan niitä, jotka ottavat kiinni: https://www.desmos.com/calculator/qe5l5jjgfh

        Tuo kulmien sarjahan muuten hajaantuu eli jos neliöitä on äärettömästi, niin sisimmäistä voi pyörittää miten paljon vaan. Arkustangentti on origossa lineaarinen ja se rationaalifunktio, joka sen sisälle tulee on about 1/(sivulla), joten sarja on about harmoninen. Täysi kierros (suuntaansa) tulee ekan kerran vissiin kun on 1004 neliötä.

        Entäpä vastaava tehtävä tasasivuisille kolmioille? Tein vähän jo aihiota Desmokseen: https://www.desmos.com/calculator/mnz5rogogm Pitäisi vaan se kulman kaava selvittää.

        Hienosti toimii. Kesti vain hiukan aikaa löytää se rot sliderin alla piilossa ollut käynnistysnappi.

        Jos pienin neliö on kiinteä ja aloitetaan pyörittämään isointa neliötä, niin kuvio käyttäytynee hiukan eri tavalla.


      • Anonyymi
        Anonyymi kirjoitti:

        Hienosti toimii. Kesti vain hiukan aikaa löytää se rot sliderin alla piilossa ollut käynnistysnappi.

        Jos pienin neliö on kiinteä ja aloitetaan pyörittämään isointa neliötä, niin kuvio käyttäytynee hiukan eri tavalla.

        Sitä voi vetää myös kuvan pisteestä, joka on liukusäätimen luvun avulla määritetty. Ilmeisesti kun (cos, sin) -parametrisaatiolla määrittelee, niin Desmos ymmärtää sen pyöritykseksi. Affiinit a*((luku)+b) toimivat myös mutta muut monimutkaisemmat funktiot ei(?). Ja jos sen laittaa riippumaan kahdesta säätimestä, niin silloin se näyttää olevan melko sattumanvaraista kumpi säätyy, kun pistettä liikuttaa. Tämän takia tuossa kolmio-tapauksessa laitoinkin, kun mulla on siinä se eka kolmio parametrina n_1, niin muodossa n_1 = 1/1, jotta siitä ei tule liukusäädintä.
        Mutta tokihan niitä liukusäätimiä voi säätää sieltä funktiopaneelin puoleltakin.


      • Anonyymi
        Anonyymi kirjoitti:

        Sitä voi vetää myös kuvan pisteestä, joka on liukusäätimen luvun avulla määritetty. Ilmeisesti kun (cos, sin) -parametrisaatiolla määrittelee, niin Desmos ymmärtää sen pyöritykseksi. Affiinit a*((luku) b) toimivat myös mutta muut monimutkaisemmat funktiot ei(?). Ja jos sen laittaa riippumaan kahdesta säätimestä, niin silloin se näyttää olevan melko sattumanvaraista kumpi säätyy, kun pistettä liikuttaa. Tämän takia tuossa kolmio-tapauksessa laitoinkin, kun mulla on siinä se eka kolmio parametrina n_1, niin muodossa n_1 = 1/1, jotta siitä ei tule liukusäädintä.
        Mutta tokihan niitä liukusäätimiä voi säätää sieltä funktiopaneelin puoleltakin.

        Kolmion kaavaksi sain (kosini- ja sinilauseita käyttäen): https://www.desmos.com/calculator/wf3hqtirbr

        Vakiota vaille samanlainen rajakäyttäytyminenhän tuossa taitaa tulla.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Takaisin ylös

    Luetuimmat keskustelut

    1. Aivosyöpää sairastava Olga Temonen TV:ssä - Viimeinen Perjantai-keskusteluohjelma ulos

      Näyttelijä-yrittäjä Olga Temonen sairastaa neljännen asteen glioomaa eli aivosyöpää, jota ei ole mahdollista leikata. Hä
      Maailman menoa
      77
      2727
    2. Pelotelkaa niin paljon kuin sielu sietää.

      Mutta ei mene perille asti. Miksi Venäjä hyökkäisi Suomeen? No, tottahan se tietenkin on jos Suomi joka ei ole edes soda
      Maailman menoa
      281
      1559
    3. Mikä saa ihmisen tekemään tällaista?

      Onko se huomatuksi tulemisen tarve tosiaan niin iso tarve, että nuoruuttaan ja tietämättömyyttään pilataan loppuelämä?
      Sinkut
      246
      1497
    4. Minkä merkkisellä

      Autolla kaivattusi ajaa? Mies jota kaipaan ajaa Mersulla.
      Ikävä
      87
      1351
    5. IL - VARUSMIEHIÄ lähetetään jatkossa NATO-tehtäviin ulkomaille!

      Suomen puolustuksen uudet linjaukset: Varusmiehiä suunnitellaan Nato-tehtäviin Puolustusministeri Antti Häkkänen esittel
      Maailman menoa
      399
      1321
    6. Nyt kun Pride on ohi 3.0

      Edelliset kaksi ketjua tuli täyteen. Pidetään siis edelleen tämä asia esillä. Raamattu opettaa johdonmukaisesti, että
      Luterilaisuus
      394
      1260
    7. Esko Eerikäinen tatuoi kasvoihinsa rakkaan nimen - Kärkäs kommentti "Ritvasta" lävähti somessa

      Ohhoh! Esko Eerikäinen on ottanut uuden tatuoinnin. Kyseessä ei ole mikä tahansa kuva minne tahansa, vaan Eerikäisen tat
      Suomalaiset julkkikset
      38
      1007
    8. Kiitos nainen

      Kuitenkin. Olet sitten ajanmerkkinä. Tuskin enää sinua näen ja huomasitko, että olit siinä viimeisen kerran samassa paik
      Tunteet
      2
      929
    9. Hyväksytkö sinä sen että päättäjämme ei rakenna rauhaa Venäjän kanssa?

      Vielä kun sota ehkäpä voitaisiin välttää rauhanponnisteluilla niin millä verukkeella voidaan sanoa että on hyvä asia kun
      Maailman menoa
      321
      832
    10. Miksi Purra-graffiti ei nyt olekkaan naisvihaa?

      "Pohtikaapa reaktiota, jos vastaava graffiti olisi tehty Sanna Marinista", kysyy Tere Sammallahti. Helsingin Suvilahden
      Maailman menoa
      254
      822
    Aihe